Giải Toán 11 trang 12 Tập 1 Cánh diều


Với Giải Toán 11 trang 12 Tập 1 trong Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác Toán lớp 11 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 12.

Giải Toán 11 trang 12 Tập 1 Cánh diều

Luyện tập 9 trang 12 Toán 11 Tập 1: Cho góc lượng giác α sao cho π<α<3π2sinα=45. Tìm cosα.

Lời giải:

Do π<α<3π2 nên cosα < 0.

Áp dụng công thức cos2α + sin2α= 1, ta có: cos2α+452=1

Suy ra cos2α=1452=11625=925

Do đó cosα=35(do cosα < 0).

Khi đó tanα=sinαcosα=4535=43cotα=1tanα=143=34.

Hoạt động 10 trang 12 Toán 11 Tập 1: Tìm các giá trị lượng giác của góc lượng giác α = 45°.

Lời giải:

Hoạt động 10 trang 12 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lấy điểm M trên đường tròn lượng giác sao cho (OA, OM) = α = 45° (hình vẽ).

Gọi H, K lần lượt là hình chiếu của điểm M trên các trục Ox, Oy.

Khi đó, ta có: AOM^=45°.

Theo hệ thức trong tam giác vuông HOM, ta có:

xM=OH=OM.cosHOM^=1.cos45°=22;

yM=OK=MH=OM.sinHOM^=1.sin45°=22.

Do đó M22;22.

Vậy sin45°=22;cos45°=22;tan45°=1;cot45°=1.

Luyện tập 10 trang 12 Toán 11 Tập 1: Tính giá trị của biểu thức: Q=tan2π3+sin2π4+cotπ4+cosπ2.

Lời giải:

Ta có:Q=tan2π3+sin2π4+cotπ4+cosπ2

=32+222+1+0=3+12+1=92.

Lời giải bài tập Toán 11 Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác Cánh diều hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: