Giải Toán 11 trang 32 Tập 1 Cánh diều
Với Giải Toán 11 trang 32 Tập 1 trong Bài 4: Phương trình lượng giác cơ bản Toán lớp 11 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 32.
Giải Toán 11 trang 32 Tập 1 Cánh diều
Câu hỏi khởi động trang 32 Toán 11 Tập 1: Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo là đường elip (Hình 32). Độ cao h (km) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức h = 550 + 450cost (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2021), trong đó t là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Tại thời điểm t bằng bao nhiêu thì vệ tinh cách mặt đất 1 000 km; 250 km; 100 km?
Trên thực tế, có nhiều bài toán dẫn đến việc giải một trong các phương trình có dạng: sinx = m, cosx = m, tanx = m, cotx = m, trong đó x là ẩn số, m là số thực cho trước. Các phương trình đó là các phương trình lượng giác cơ bản.
Lời giải:
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
• Để vệ tinh cách mặt đất 1 000 km thì 550 + 450cost = 1 000
450cost=450
cost = 1
t = k2 (k, t0)
t = k2. = 100k (k{0; 1; 2; 3;...}
Vậy tại các thời điểm t = 100k (với k ∈ ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 1 000 km.
• Để vệ tinh cách mặt đất 250 km thì 550 + 450cost = 250
450cost = -300
cost = -
(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp ta được kết quả gần đúng là 2,3)
Vậy tại các thời điểm t +100k (với k ∈ ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 250 km.
• Để vệ tinh cách mặt đất 100 km thì 550 + 450cost = 100
450cost = -450
cost = -1
t = +k2 (kZ, t0).
t = 50+100k (k{0;1;2;3;...}
Vậy tại các thời điểm t = 50 + 100k (với k ∈ ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 100 km.
Hoạt động 1 trang 32 Toán 11 Tập 1: Cho hai phương trình (với cùng ẩn x):
x2 ‒ 3x + 2 = 0 (1)
(x – 1)(x – 2) = 0 (2)
a) Tìm tập nghiệm S1 của phương trình (1) và tập nghiệm S2 của phương trình (2).
b) Hai tập S1, S2 có bằng nhau hay không?
Lời giải:
a) Ta có:
x2 ‒ 3x + 2 = 0 (1)
Suy ra x = 1 hoặc x = 2.
Vậy phương trình (1) có tập nghiệm S1 = {1; 2}.
(x – 1)(x – 2) = 0 (2)
Suy ra x = 1 hoặc x = 2.
Vậy phương trình (2) có tập nghiệm S2 = {1; 2}.
b) Hai tập S1, S2 bằng nhau vì cùng là tập {1; 2}.
Luyện tập 1 trang 32 Toán 11 Tập 1: Hai phương trình x – 1 = 0 và =0 có tương đương không? Vì sao?
Lời giải:
Tập nghiệm của phương trình x – 1 = 0 là S1 = {1}.
Tập nghiệm của phương trình là S2 = {1}.
Vì S1 = S2 nên hai phương trình x – 1 = 0 và =0 tương đương.
Lời giải bài tập Toán 11 Bài 4: Phương trình lượng giác cơ bản Cánh diều hay khác: