Giải Toán 11 trang 35 Tập 1 Cánh diều


Với Giải Toán 11 trang 35 Tập 1 trong Bài 4: Phương trình lượng giác cơ bản Toán lớp 11 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 35.

Giải Toán 11 trang 35 Tập 1 Cánh diều

Luyện tập 4 trang 35 Toán 11 Tập 1: Giải phương trình sin2x = sinx+π4.

Lời giải:

Ta có:

sin2x = sinx+π4

Luyện tập 4 trang 35 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Vậy phương trình đã cho có các nghiệm là x = π4+k2π và x = π4+k2π3 với k ℤ.

Hoạt động 4 trang 35 Toán 11 Tập 1:

a) Đường thẳng d: y = 12 cắt đồ thị hàm số y = cosx, x [‒π; π] tại hai giao điểm C0, D (Hình 34). Tìm hoành độ của hai giao điểm C0, D.

Hoạt động 4 trang 35 Toán 11 Tập 1 | Cánh diều Giải Toán 11

b) Đường thẳng d: y = 12 cắt đồ thị hàm số y = cosx, x [π; 3π] tại hai giao điểm C1, D (Hình 34). Tìm hoành độ của hai giao điểm C1, D.

Lời giải:

a) Với x [‒π; π] ta thấy cosx = 12 tại x = -π3 và x = π3.

Do đó đường thẳng d: y = 12 cắt đồ thị hàm số y = cosx, x [‒π; π] tại hai giao điểm C0, D có hoành độ lần lượt là xC0=π3xD0=π3.

b) Với x [π; 3π] ta thấy cosx = 12 tại x = 5π3 và x = 7π3.

Do đó đường thẳng d: y = 12 cắt đồ thị hàm số y = cosx, x [π; 3π] tại hai giao điểm C1, D có hoành độ lần lượt là xC1=5π3xD1=7π3.

Lời giải bài tập Toán 11 Bài 4: Phương trình lượng giác cơ bản Cánh diều hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: