Giải Toán 11 trang 38 Tập 1 Cánh diều
Với Giải Toán 11 trang 38 Tập 1 trong Bài 4: Phương trình lượng giác cơ bản Toán lớp 11 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 38.
Giải Toán 11 trang 38 Tập 1 Cánh diều
Hoạt động 6 trang 38 Toán 11 Tập 1: Quan sát các giao điểm của đồ thị hàm số y = cotx và đường thẳng y = ‒1 (Hình 36).
a) Từ hoành độ giao điểm của đồ thị hàm số y = cotx và đường thẳng y = ‒1 trên khoảng (0; π), hãy xác định tất cả các hoành độ giao điểm của hai đồ thị đó.
b) Có nhận xét gì về nghiệm của phương trình cotx = ‒1?
Lời giải:
a) Với x ∈ (0; π), ta thấy cotx = ‒1 tại x=.
Do đó đường thẳng y = ‒1 cắt đồ thị hàm số y = cotx trên khoảng (0; π) tại điểm có hoành độ là .
Do hàm số y = cotx tuần hoàn với chu kì là π nên đường thẳng y = ‒1 cắt đồ thị hàm số y = cotx tại các điểm có hoành độ là x=+k (kZ).
b) Phương trình cotx = ‒1 có các nghiệm là x=-+k.
Luyện tập 8 trang 39 Toán 11 Tập 1:
a) Giải phương trình: cotx = 1.
b) Tìm góc lượng giác x sao cho cotx = cot(‒83°).
Lời giải:
a) Do cotx = 1 nên cotx = cot x=+k (kZ).
Vậy phương trình cotx = 1 có các nghiệm là x=+k với k ∈ ℤ.
b) cotx = cot(‒83°)
x = ‒83° + k180° (k ∈ ℤ).
Vậy các góc lượng giác x cần tìm là x = ‒83° + k180° với k ∈ ℤ.
Lời giải bài tập Toán 11 Bài 4: Phương trình lượng giác cơ bản Cánh diều hay khác: