Giải Toán 11 trang 75 Tập 2 Cánh diều
Haylamdo biên soạn và sưu tầm lời giải Toán 11 trang 75 Tập 2 trong Bài 3: Đạo hàm cấp hai Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 75.
Giải Toán 11 trang 75 Tập 2 Cánh diều
Bài 1 trang 75 Toán 11 Tập 2: Tìm đạo hàm cấp hai của mỗi hàm số sau:
a)
b) y = log3x;
c) y = 2x.
Lời giải:
a) Xét hàm số xác định với mọi
Với ta có:
Suy ra
b) Xét hàm số y = log3x xác định với mọi x > 0.
Với x > 0, ta có:
Suy ra
c) Xét hàm số y = 2x, ta có: y' = (2x)' = 2x.ln2
Suy ra y'' = (2x.ln2)' = ln2.2x.ln2 = 2x.ln22.
Bài 2 trang 75 Toán 11 Tập 2: Tính đạo hàm cấp hai của mỗi hàm số sau:
a) y = 3x2 – 4x + 5 tại điểm x0 = –2;
b) y = log3(2x + 1) tại điểm x0 = 3;
c) y = e4x + 3 tại điểm x0 = 1;
d) tại điểm
e) tại điểm x0 = 0.
Lời giải:
a) Xét hàm số y = 3x2 – 4x + 5, ta có:
y' = 6x – 4;
y'' = 6.
Do đó: y''(–2) = 6.
b) Xét hàm số y = log3(2x + 1), ta có:
Do đó:
c) Xét hàm số y = e4x + 3, ta có:
y' = (e4x + 3)' = (4x + 3)'. e4x + 3 = 4e4x + 3;
y'' = (4e4x + 3)' = 4.(4x + 3)'.e4x + 3 = 16e4x + 3.
Do đó: y''(1) = 16e4.1 + 3 = 16e7.
d) Xét hàm số ta có:
e) Xét hàm số ta có:
Do đó:
Bài 3 trang 75 Toán 11 Tập 2: Một vật rơi tự do theo phương thẳng đứng có phương trình chuyển động trong đó g là gia tốc rơi tự do, g ≈ 9,8 m/s2.
a) Tính vận tốc tức thời của vật tại thời điểm t0 = 2 (s).
b) Tính gia tốc tức thời của vật tại thời điểm t0 = 2 (s).
Lời giải:
Xét hàm số
a) Vận tốc tức thời của vật: v(t) = s'(t) = gt.
Tại thời điểm t0 = 2 (s) có: v(2) ≈ 9,8 . 2 = 19,6 (m/s).
b) Gia tốc tức thời của vật: a(t) = v'(t) = g.
Tại thời điểm t0 = 2 (s) có: a(2) ≈ 9,8 (m/s2).
Bài 4 trang 75 Toán 11 Tập 2: Một chất điểm chuyển động theo phương trình s(t) = t3 – 3t2 + 8t + 1, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc tức thời, gia tốc tức thời của chất điểm:
a) Tại thời điểm t = 3 (s);
b) Tại thời điểm mà s(t) = 7 (m)
Lời giải:
Xét hàm số s(t) = t3 – 3t2 + 8t + 1.
Suy ra v(t) = s'(t) = 3t2 – 6t + 8;
a(t) = v'(t) = 6t – 6.
a) Vận tốc tức thời tại thời điểm t = 3 (s) là v(3) = 3.32 – 6.3 + 8 = 17 (m/s).
Gia tốc tức thời tại thời điểm t = 3 (s) là a(3) = 6.3 – 6 = 12 (m/s2).
b) Tại thời điểm s(t) = 7 thì t3 – 3t2 + 8t + 1 = 7
Do đó t3 – 3t2 + 8t – 6 = 0.
Suy ra t = 1 (s)
Vận tốc tức thời tại thời điểm t = 1 (s) là v(1) = 3.12 – 6.1 + 8 = 5 (m/s).
Gia tốc tức thời tại thời điểm t = 1 (s) là a(1) = 6.1 – 6 = 0 (m/s2).
Bài 5 trang 75 Toán 11 Tập 2: Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát như Hình 7, có phương trình chuyển động x(t) = 4sint, trong đó t tính bằng giây và x(t) tính bằng centimet.
a) Tìm phương trình theo thời gian của vận tốc tức thời và gia tốc tức thời của con lắc.
b) Tính vận tốc tức thời và gia tốc tức thời của con lắc tại thời điểm (s). Tại thời điểm đó, con lắc đi theo chiều dương hay chiều âm của trục Ox?
Lời giải:
a) Phương trình vận tốc tức thời của con lắc là:
v(t) = x'(t) = (4sint)' = 4cost.
Phương trình gia tốc tức thời của con lắc là:
a(t) = v'(t) = (4cost)' = 4(–sint) = –4sint.
b) Vận tốc tức thời của con lắc tại (s) là:
Gia tốc tức thời của con lắc tại (s)là:
(m/s2).
Do vận tốc tức thời tại thời điểm (s) mang giá trị âm nên con lắc lúc này đang di chuyển theo chiều âm của trục Ox.
Lời giải bài tập Toán 11 Bài 3: Đạo hàm cấp hai hay khác: