Bài 3 trang 60 Toán 11 Tập 1 Chân trời sáng tạo
Giải Toán 11 Bài 3: Cấp số nhân - Chân trời sáng tạo
Bài 3 trang 60 Toán 11 Tập 1:
a) Số đo bốn góc của một tứ giác lập thành cấp số nhân. Tìm số đo của bốn góc đó biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.
b) Viết sáu số xen giữa các số – 2 và 256 để được cấp số nhân có tám số hạng. Nếu viết tiếp số hạng thứ 15 là bao nhiêu?
Lời giải:
a) Gọi số đo bốn góc của một tứ giác được lập thành một cấp số nhân có công bội q theo thứ tự từ bé đến lớn là: α; β; γ; φ.
Ta có: β = αq, γ = α.q2, φ = α.q3.
Ta lại có: φ = 8α nên q3 = 8 ⇔ q = 2.
Do đó cấp số cộng trên trở thành: α; 2α; 4α; 8α.
Tổng bốn góc trong tứ giác bằng 360° nên α + 2α + 4α + 8α = 360°
⇔ 15α = 360°
⇔ α = 24°
Vậy số đo của các góc trong tứ giác lần lượt là 24°; 48°; 72°; 96°.
b) Cấp số nhân đã cho có u1 = – 2 và u8 = 256.
Ta có: u8 = u1q7 = (– 2).q7 = 256
⇔ q = – 2
Suy ra các số hạng xen giữa hai số – 2 và 256 là: 4; – 8; 16; – 32; 64; – 128.
Số hạng thứ 15 của dãy là: u15 = (– 2).( – 2)14 = (– 2)15 = 0 – 32 768.
Lời giải bài tập Toán 11 Bài 3: Cấp số nhân hay, chi tiết khác:
Bài 1 trang 60 Toán 11 Tập 1: Trong các dãy số sau, dãy số nào là cấp số nhân? ....
Bài 2 trang 60 Toán 11 Tập 1: Tìm số hạng đầu và công bội của cấp số nhân (un), biết: ....
Bài 4 trang 60 Toán 11 Tập 1: Ba số theo thứ tự lập thành cấp số cộng ....
Bài 7 trang 61 Toán 11 Tập 1: Giả sử một thành phố có dân số năm 2022 là khoảng 2,1 triệu người ....