b) Xác định đường vuông góc chung và tính khoảng cách giữa AC và B'D'.


Câu hỏi:

b) Xác định đường vuông góc chung và tính khoảng cách giữa AC và B'D'.

Trả lời:

b) Gọi O là giao điểm của AC và BD, O' là giao điểm của A'C' và B'D'.

Do ABCD là hình chữ nhật nên O là trung điểm của AC, BD và A'B'C'D' là hình chữ nhật nên O' là trung điểm của A'C' và B'D'.

Có AA' // CC' và AA' = CC' (do chúng cùng song song và bằng BB’) nên AA'C'C là hình bình hành mà AA' ^ (ABCD) nên AA' ^ AC. Do đó AA'C'C là hình chữ nhật.

Do AA'C'C là hình chữ nhật và O là trung điểm của AC, O' là trung điểm của A'C' nên OO' ^ AC và OO' = AA' = a.

Có BB' // DD' và BB' = DD' (do chúng cùng song song và bằng AA') nên BB'D'D là hình bình hành mà BB' ^ (ABCD) nên BB' ^ BD. Do đó BB'D'D là hình chữ nhật.

Vì BB'D'D là hình chữ nhật và O là trung điểm của BD, O' là trung điểm của B'D' nên OO' ^ B'D'.

Vì OO' ^ AC và OO' ^ B'D' nên OO' là đường vuông góc chung của AC và B'D'.

Khi đó d(AC, B'D') = OO' = a.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

a) Cho điểm M và đường thẳng a. Gọi H là hình chiếu của M trên a. Với mỗi điểm K thuộc a, giải thích vì sao MK ³ MH (H.7.74).

a) Cho điểm M và đường thẳng a. Gọi H là hình chiếu của M trên a. Với mỗi điểm K thuộc a, giải thích vì sao MK  MH (H.7.74). (ảnh 1)

Xem lời giải »


Câu 2:

b) Cho điểm M và mặt phẳng (P). Gọi H là hình chiếu của M lên (P). Với mỗi điểm K thuộc (P), giải thích vì sao MK ³ MH (H7.75).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77).

a) Tính khoảng cách từ A đến mặt phẳng (BCC'B').

Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77). a) Tính khoảng cách từ A đến mặt phẳng (BCC'B'). (ảnh 1)

Xem lời giải »


Câu 4:

b) Tam giác ABC' là tam giác gì? Tính khoảng cách từ A đến BC'.

Xem lời giải »


Câu 5:

Cho tứ diện ABCD có các cạnh đều bằng a. Gọi M, N tương ứng là trung điểm của các cạnh AB, CD. Chứng minh rằng:

a) MN là đường vuông góc chung của ABCD.

Xem lời giải »


Câu 6:

b) Các cặp cạnh đối diện trong tứ diện ABCD đều vuông góc với nhau.

Xem lời giải »


Câu 7:

Cho hình lập phương ABCD.A'B'C'D' cạnh a.

a) Chứng minh rằng hai mặt phẳng (D'AC) và (BC'A') song song với nhau và DB' vuông góc với hai mặt phẳng đó.

Xem lời giải »


Câu 8:

b) Xác định các giao điểm E, F của DB' với (D'AC), (BC'A'). Tính d((D'AC), (BC'A')).

Xem lời giải »