Lý thuyết Toán lớp 12 Đường tiệm cận của đồ thị hàm số - Cánh diều
Haylamdo biên soạn tóm tắt lý thuyết Toán 12 Bài 3: Đường tiệm cận của đồ thị hàm số sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 12 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.
Lý thuyết Toán lớp 12 Đường tiệm cận của đồ thị hàm số - Cánh diều
Lý thuyết Đường tiệm cận của đồ thị hàm số
1. Đường tiệm cận ngang
Đường thẳng y = y0 được gọi là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu: hoặc
Nhận xét: Giả sử đường thẳng y = y0 là tiệm cận ngang của đồ thị hàm số y = f(x). Lấy điểm M(x; y) thuộc đồ thị hàm số. Gọi MH là khoảng cách từ điểm M đến đường thẳng y = y0. Khi đó, độ dài MH tiến tới 0 khi x → + ∞ hay x → – ∞.
Ví dụ 1. Tìm tiệm cận ngang của đồ thị hàm số y = f(x) =
Hướng dẫn giải
Hàm số đã cho có tập xác định là ℝ \ {1}.
Ta có:
Vậy đường thẳng y = 5 là tiệm cận ngang của đồ thị hàm số đã cho.
2. Đường tiệm cận đứng
Đường thẳng x = x0 được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Nhận xét: Giả sử đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số y = f(x). Lấy điểm M(x; y) thuộc đồ thị hàm số. Gọi MH là khoảng cách từ điểm M đến đường thẳng x = x0. Khi đó, độ dài MH tiến tới 0 khi x → x0+ hay x → x0–.
Ví dụ 2. Tìm tiệm cận đứng của đồ thị hàm số y = f(x) =
Hướng dẫn giải
Hàm số đã cho có tập xác định là ℝ \ {0}.
Ta có:
Vậy đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số đã cho.
3. Đường tiệm cận xiên
Đường thẳng y = ax + b (a ≠ 0) được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu:
hoặc
Nhận xét: Giả sử đường thẳng y = ax + b (a ≠ 0) là tiệm cận xiên của đồ thị hàm số y = f(x). Lấy điểm M thuộc đồ thị hàm số y = f(x) và điểm N thuộc đường thẳng y = ax + b có cùng hoành độ x. Khi đó, độ dài MN tiến tới 0 khi x → + ∞ hay x → – ∞.
Ví dụ 3. Cho hàm số y = f(x) = Chứng minh rằng đường thẳng y = x là tiệm cận xiên của đồ thị hàm số f(x).
Hướng dẫn giải
Do nên đường thẳng y = x là tiệm cận xiên của đồ thị hàm số đã cho.
Chú ý: Để xác định hệ số a, b của đường tiệm cận xiên y = ax + b của đồ thị hàm số y = f(x), ta có thể áp dụng công thức sau:
và hoặc và
(Khi a = 0 thì ta có tiệm cận ngang y = b).
Ví dụ 4. Tìm tiệm cận xiên của đồ thị hàm số y = f(x) =
Hướng dẫn giải
Ta có và
Tương tự
Vậy đường thẳng y = x – 2 là tiệm cận xiên của đồ thị hàm số đã cho.
Bài tập Đường tiệm cận của đồ thị hàm số
Bài 1. Tiệm cận ngang của đồ thị hàm số là
A. x = 3.
B. y = 3.
C. x = – 2.
D. y = – 2.
Hướng dẫn giải
Đáp án đúng là: B
Hàm số đã cho có tập xác định là ℝ \ {– 2}.
Ta có:
Vậy đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số đã cho.
Bài 2. Tiệm cận xiên của đồ thị hàm số là
A. y = x – 1.
B. y = x + 3.
C. y = x – 3.
D. y = x.
Hướng dẫn giải
Đáp án đúng là: C
Do nên đường thẳng y = x – 3 là tiệm cận xiên của đồ thị hàm số đã cho.
Bài 3. Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của mỗi đồ thị hàm số sau:
a)
b)
c) y = 2x – 1 +
Hướng dẫn giải
a)
Hàm số đã cho có tập xác định là ℝ \ {– 1}.
Ta có
Do đó, đường thẳng y = – 1 là tiệm cận ngang của đồ thị hàm số đã cho.
Lại có
Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số đã cho.
Đồ thị hàm số đã cho không có tiệm cận xiên.
b)
Hàm số đã cho có tập xác định là ℝ \ {– 1}.
Ta có
Do đó, đồ thị hàm số đã cho không có tiệm cận ngang.
Lại có
Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số đã cho.
Ta có
;
Do đó, đường thẳng y = x – 4 là tiệm cận xiên của đồ thị hàm số đã cho.
c) y = 2x – 1 +
Hàm số đã cho có tập xác định là ℝ \ {0}.
Đồ thị hàm số đã cho không có tiệm cận ngang.
Ta có
Do đó, đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số đã cho.
Lại có
Do đó, đường thẳng y = 2x – 1 là tiệm cận xiên của đồ thị hàm số đã cho.
Bài 4. Nếu trong một ngày, một xưởng sản xuất được x sản phẩm thì chi phí trung bình (tính bằng nghìn đồng) cho một sản phẩm được cho bởi công thức:
a) Tìm các đường tiệm cận của đồ thị hàm số y = C(x).
b) Nêu nhận xét về chi phí của một sản phẩm khi số sản phẩm được sản xuất trong một ngày x đủ lớn.
Hướng dẫn giải
a) Xét hàm số y = với x ∈ (0; + ∞).
Ta có: Do đó, đường thẳng y = 50 là tiệm cận ngang của đồ thị hàm số y = C(x).
Lại có Do đó, đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số y = C(x).
b) Khi x → + ∞, ta có C(x) → 50, điều đó có nghĩa là khi x đủ lớn thì chi phí sản xuất một sản phẩm sẽ gần bằng 50 nghìn đồng.
Học tốt Đường tiệm cận của đồ thị hàm số
Các bài học để học tốt Đường tiệm cận của đồ thị hàm số Toán lớp 12 hay khác: