Bài 4 trang 36 Toán 12 Tập 1 Chân trời sáng tạo
Khảo sát và vẽ đồ thị của các hàm số sau:
Giải Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản - Chân trời sáng tạo
Bài 4 trang 36 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:
a)
b) .
Lời giải:
a)
1. Tập xác định: D = ℝ\{1}.
2. Sự biến thiên:
● Chiều biến thiên:
Đạo hàm y' = . Ta có y' = 0 ⇔ x = 0 hoặc x = 2.
Trên các khoảng (– ∞; 0) và (2; + ∞), y' > 0 nên hàm số đồng biến trên mỗi khoảng đó.
Trên các khoảng (0; 1) và (1; 2), y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó.
● Cực trị:
Hàm số đạt cực tiểu tại x = 2 và yCT = 2.
Hàm số đạt cực đại tại x = 0 và yCĐ = – 2.
● Các giới hạn tại vô cực và tiệm cận:
Ta có và .
Suy ra đường thẳng y = x – 1 là tiệm cận xiên của đồ thị hàm số.
Ta có . Suy ra đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
● Bảng biến thiên:
3. Đồ thị:
Đồ thị hàm số giao với trục Oy tại điểm (0; – 2).
Đồ thị hàm số không cắt trục Ox.
Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.
Tâm đối xứng của đồ thị hàm số là điểm I(1; 0).
Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 1 và y = x – 1.
b)
1. Tập xác định: D = ℝ\.
2. Sự biến thiên:
● Chiều biến thiên:
Đạo hàm y' = . Ta có y' = 0 ⇔ x = 0 hoặc x = 1.
Trên các khoảng (– ∞; 0) và (1; + ∞), y' > 0 nên hàm số đồng biến trên mỗi khoảng đó.
Trên các khoảng và , y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó.
● Cực trị:
Hàm số đạt cực tiểu tại x = 1 và yCT = 3.
Hàm số đạt cực đại tại x = 0 và yCĐ = – 1.
● Các giới hạn tại vô cực và tiệm cận:
Ta có . Suy ra đường thẳng y = 2x là tiệm cận xiên của đồ thị hàm số.
Ta có . Suy ra đường thẳng x = là tiệm cận đứng của đồ thị hàm số.
● Bảng biến thiên:
3. Đồ thị:
Đồ thị hàm số giao với trục Oy tại điểm (0; – 1).
Đồ thị hàm số không cắt trục Ox.
Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.
Tâm đối xứng của đồ thị hàm số là điểm I.
Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = và y = 2x.
Lời giải bài tập Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay, chi tiết khác:
Hoạt động khám phá trang 25 Toán 12 Tập 1: Cho hàm số y = – x2 + 4x – 3. ....
Thực hành 1 trang 28 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau: ....
Thực hành 2 trang 30 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau: ....
Thực hành 3 trang 32 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau: ....