Giải Toán 12 trang 34 Tập 2 Chân trời sáng tạo


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 34 Tập 2 trong Bài 1: Phương trình mặt phẳng Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 34.

Giải Toán 12 trang 34 Tập 2 Chân trời sáng tạo

Thực hành 2 trang 34 Toán 12 Tập 2: Cho mặt phẳng (Q) đi qua ba điểm A(1; 1; 1), B(−1; 1; 5), C(10; 7; −1). Tìm cặp vectơ chỉ phương và một vectơ pháp tuyến của (Q).

Lời giải:

Ta có AB=2;0;4,AC=9;6;2 là cặp vectơ chỉ phương của mặt phẳng (Q).

AB,AC=0462;4229;209624;32;12

Do đó mặt phẳng (Q) nhận n=14AB,AC=6;8;3 làm một vectơ pháp tuyến.

Vận dụng 2 trang 34 Toán 12 Tập 2: Cho biết hai vectơ a=2;1;1, b=1;2;0 có giá lần lượt song song với ngón trỏ và ngón giữa của bàn tay trong Hình 5. Tìm vectơ n có giá song song với ngón cái. (Xem như ba ngón tay nói trên tạo thành ba đường thẳng đôi một vuông góc).

Vận dụng 2 trang 34 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Ta có a,b=1120;1201;2112=2;1;5.

Vậy n=a,b=2;1;5 có giá song song với ngón cái.

Hoạt động khám phá 3 trang 35 Toán 12 Tập 2: Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M0(1; 2; 3) và nhận n=7;5;2 làm vectơ pháp tuyến. Gọi M(x; y; z) là một điểm tùy ý trong không gian. Tính tích vô hướng n.M0M theo x, y, z.

Hoạt động khám phá 3 trang 35 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Ta có M0M=x1;y2;z3.

n.M0M=7x1+5y2+2z3 = 7x + 5y + 2z – 23.

Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: