Giải Toán 12 trang 62 Tập 1 Chân trời sáng tạo


Với Giải Toán 12 trang 62 Tập 1 trong Bài 3: Biểu thức toạ độ của các phép toán vectơ Toán 12 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 62.

Giải Toán 12 trang 62 Tập 1 Chân trời sáng tạo

Thực hành 4 trang 62 Toán 12 Tập 1: Cho tam giác MNP có M(2; 1; 3), N(1; 2; 3), P(−3;−1; 0). Tìm tọa độ:

a) Các điểm M', N', P' lần lượt là trung điểm của các cạnh NP, MP, MN;

b) Trọng tâm G của tam giác M'N'P'.

Lời giải:

a) Tọa độ trung điểm M' của cạnh NP là

M'132;212;3+02 hay M'1;12;32 .

Tọa độ trung điểm N' của cạnh MP là

N'232;112;3+02 hay N'12;0;32 .

Tọa độ trung điểm P' của cạnh MN là

P'2+12;1+22;3+32 hay P'32;32;3 .

b) Tọa độ trọng tâm G là:

G112+323;12+0+323;32+32+33 hay G0;23;2 .

Vận dụng 3 trang 62 Toán 12 Tập 1: Cho hình chóp S.ABC có SA (ABC), SA = a và đáy ABC là tam giác đều cạnh a, O là trung điểm của BC. Bằng cách thiết lập hệ tọa độ như Hình 3, hãy tìm tọa độ:

a) Các điểm A, S, B, C.

b) Trung điểm M của SB và trung điểm N của SC.

c) Trọng tâm G của tam giác SBC.

Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo

Lời giải:

a)

Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo

Vì ABC là tam giác đều cạnh a, O là trung điểm của BC nên AO là đường cao.

Suy ra AO=a32 và OB = OC = a2 .

OCi cùng hướng và OC=a2 nên OC=a2i . Suy ra Ca2;0;0 .

OBi ngược hướng và OB=a2 nên OB=a2i . Suy ra Ba2;0;0 .

OAj cùng hướng và OA=a32 nên OA=a32j . Suy ra A0;a32;0

Gọi I là hình chiếu của S trên Oz.

Ta có OI = SA.

Vì OI và k cùng hướng và OI = a nên OI=ak .

Theo quy tắc hình bình hành có: OS=OA+OI=a32j+ak .

Do đó S0;a32;a .

b) Tọa độ trung điểm M của SB là

M0a22;a32+02;a+02 hay Ma4;a34;a2 .

Tọa độ trung điểm N của SC là

N0+a22;a32+02;a+02 hay Na4;a34;a2 .

c) Tọa độ trọng tâm G của tam giác SBC là:

G0a2+a23;0+a32+03;0+a+03 hay G0;a36;a3 .

Lời giải bài tập Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: