Giải Toán 12 trang 32 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 32 Tập 2 trong Bài 14: Phương trình mặt phẳng Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 32.

Giải Toán 12 trang 32 Tập 2 Kết nối tri thức

HĐ4 trang 32 Toán 12 Tập 2: Trong không gian Oxyz, cho mặt phẳng (α). Gọi n=A;B;C là một vectơ pháp tuyến của (α) và M0(x0; y0; z0) là một điểm thuộc (α).

a) Một điểm M(x; y; z) thuộc (α) khi và chỉ khi hai vectơ nM0M có mối quan hệ gì?

b) Điểm M(x; y; z) thuộc (α) khi và chỉ khi tọa độ của nó thỏa mãn hệ thức nào?

Lời giải:

a) Ta có M0M=xx0;yy0;zz0

n=A;B;C là một vectơ pháp tuyến của (α) nên nM0M

Suy ra n.M0M=0 ⇔ A(x – x0) + B(y – y0) + C(z – z0) = 0.

Vậy một điểm M(x; y; z) thuộc (α) khi và chỉ khi hai vectơ nM0M vuông góc với nhau.

b) Từ câu a, ta có A(x – x0) + B(y – y0) + C(z – z0) = 0

⇔ Ax + By + Cz = Ax0 + By0 + Cz0

⇔ Ax + By + Cz = D (trong đó D = Ax0 + By0 + Cz0).

Vậy điểm M(x; y; z) thuộc (α) khi và chỉ khi tọa độ của nó thỏa mãn hệ thức Ax + By + Cz = D trong đó n=A;B;C và D = Ax0 + By0 + Cz0.

Luyện tập 4 trang 32 Toán 12 Tập 2: Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình tổng quát của một mặt phẳng?

a) x2 + 2y2 + 3z2 – 1 = 0;

b) x2y+z3+5=0

c) xy + 5 = 0.

Lời giải:

Trong các phương trình trên, chỉ có phương trình x2y+z3+5=0 có dạng Ax + By + Cz + D = 0 (A=12;B=1;C=13).

Vì vậy trong các phương trình trên, chỉ có phương trình x2y+z3+5=0 là phương trình mặt phẳng.

Lời giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: