Bài 3.32 trang 72 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8
Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật.
Giải Toán 8 Bài 14: Hình thoi và hình vuông - Kết nối tri thức
Bài 3.32 trang 72 Toán 8 Tập 1: Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật.
Lời giải:
Giả sử có hình thoi ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.
Ta cần chứng minh EFGH là hình chữ nhật. Thật vậy:
Do ABCD là hình thoi nên AB = BC = CD = DA.
Do E, H lần lượt là trung điểm của AB, AD nên AH = DH = AE = BE.
Tam giác AHE có AH = AE nên là tam giác cân tại A, suy ra .
Mà
Suy ra .
Tương tự, ta có tam giác DHG cân tại D nên
Mặt khác, do ABCD là hình thoi nên AB // CD, suy ra
Khi đó
Mà
Suy ra
Chứng minh tương tự như trên ta cũng có .
Tứ giác EFGH có bốn góc vuông nên là hình chữ nhật.
Lời giải bài tập Toán 8 Bài 14: Hình thoi và hình vuông hay, chi tiết khác:
HĐ1 trang 68 Toán 8 Tập 1: Cho hình thoi ABCD có hai đường chéo AC, BD cắt nhau tại O (H.3.48) ....
Câu hỏi trang 68 Toán 8 Tập 1: Hãy viết giả thiết, kết luận của câu c trong Định lí 2 ....
Luyện tập 1 trang 69 Toán 8 Tập 1: Trong Hình 3.51, hình nào là hình thoi? Vì sao? ....
Câu hỏi trang 70 Toán 8 Tập 1: Hãy viết giả thiết, kết luận của câu a trong Định lí 4 ....