X

Toán 8 Kết nối tri thức

Cho DE là đường trung bình của tam giác ABC (H.4.15). Sử dụng định lí Thalès đảo


Câu hỏi:

Cho DE là đường trung bình của tam giác ABC (H.4.15

Cho DE là đường trung bình của tam giác ABC (H.4.15).   Sử dụng định lí Thalès đảo (ảnh 1)

Sử dụng định lí Thalès đảo, chứng minh rằng DE // BC.

Trả lời:

Ta có AD = BD và D AB nên D là trung điểm của AB;

AE = EC và E AC nên E là trung điểm của AC.

Xét tam giác ABC có D, E lần lượt là trung điểm của AB và AC, theo định lí Thalès đảo, ta suy ra DE // BC (đpcm).

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết:

Câu 1:

Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?

Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm (ảnh 1)

Xem lời giải »


Câu 2:

Em hãy chỉ ra các đường trung bình của ∆DEF và ∆IHK trong Hình 4.14.

Em hãy chỉ ra các đường trung bình của tam giac DEF và tam giác IHK trong Hình 4.14. (ảnh 1)

Xem lời giải »


Câu 3:

Cho DE là đường trung bình của tam giác ABC (H.4.15

Cho DE là đường trung bình của tam giác ABC (H.4.15).   (ảnh 1)

Gọi F là trung điểm của BC. Chứng minh tứ giác DEFB là hình bình hành. Từ đó suy ra DE=12BC.

Xem lời giải »


Câu 4:

Cho tam giác ABC cân tại A, D và E lần lượt là trung điểm của AB, AC. Tứ giác DECB là hình gì? Tại sao?

Xem lời giải »


Câu 5:

Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?

Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt (ảnh 1)

Xem lời giải »


Câu 6:

Tính các độ dài x, y trong Hình 4.18.

Tính các độ dài x, y trong Hình 4.18. (ảnh 1)

Xem lời giải »