X

Toán 8 Kết nối tri thức

Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD


Câu hỏi:

Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.

Trả lời:

Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD (ảnh 1)

Vì ABCD là hình chữ nhật nên BAD^=90° và hai đường chéo AC, BD bằng nhau và cắt nhau tại trung điểm O của mỗi đường.

Suy ra AB AD; O là trung điểm của AC và BD.

Vì O, H lần lượt là trung điểm của BD và AB nên OH là đường trung bình của tam giác ABD.

Suy ra OH // AD mà AB AD nên OH AB hay AHO^=90°.

Tương tự, ta chứng minh được: OK AD hay AKO^=90°.

Ta có: BAD^+AHO^+AKO^+HOK^=360°

90°+90°+90°+HOK^=360°

270°+HOK^=360°

Suy ra HOK^=360°270°=90°.

Tứ giác AHOK có BAD^=90°;  AHO^=90°;  AKO^=90°;  HOK^=90°.

Do đó, tứ giác AHOK là hình chữ nhật.

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết:

Câu 1:

Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?

Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm (ảnh 1)

Xem lời giải »


Câu 2:

Em hãy chỉ ra các đường trung bình của ∆DEF và ∆IHK trong Hình 4.14.

Em hãy chỉ ra các đường trung bình của tam giac DEF và tam giác IHK trong Hình 4.14. (ảnh 1)

Xem lời giải »


Câu 3:

Cho DE là đường trung bình của tam giác ABC (H.4.15

Cho DE là đường trung bình của tam giác ABC (H.4.15).   Sử dụng định lí Thalès đảo (ảnh 1)

Sử dụng định lí Thalès đảo, chứng minh rằng DE // BC.

Xem lời giải »


Câu 4:

Cho DE là đường trung bình của tam giác ABC (H.4.15

Cho DE là đường trung bình của tam giác ABC (H.4.15).   (ảnh 1)

Gọi F là trung điểm của BC. Chứng minh tứ giác DEFB là hình bình hành. Từ đó suy ra DE=12BC.

Xem lời giải »