X

Toán 8 Kết nối tri thức

Mở đầu trang 76 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8


Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?

Giải Toán 8 Bài 15: Định lí Thalès trong tam giác - Kết nối tri thức

Mở đầu trang 76 Toán 8 Tập 1: Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?

Mở đầu trang 76 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Sau bài học này ta giải quyết được bài toán như sau:

Hai cạnh AC và BD thuộc hai bờ của con sông nên AC // BD, áp dụng định lí Thalès, ta có:

AEAB=CECD hay 400300=500CD .

Suy ra CD=300  .  500400=375 (m).

Vậy khoảng cách giữa C và D bằng 375 m.

Lời giải bài tập Toán 8 Bài 15: Định lí Thalès trong tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác: