Khởi động trang 61 Toán 9 Tập 2 Cánh diều


Đà Lạt là thành phố du lịch, có khí hậu mát mẻ. Nơi đây trồng nhiều loại hoa để phục vụ nhu cầu trong nước và xuất khẩu. Giả sử người ta trồng hoa trên một mảnh vườn có dạng hình chữ nhật với diện tích là 240 m, chu vi là 68 m

Giải Toán 9 Bài 3: Định lí Viète - Cánh diều

Khởi động trang 61 Toán 9 Tập 2: Đà Lạt là thành phố du lịch, có khí hậu mát mẻ. Nơi đây trồng nhiều loại hoa để phục vụ nhu cầu trong nước và xuất khẩu. Giả sử người ta trồng hoa trên một mảnh vườn có dạng hình chữ nhật với diện tích là 240 m2, chu vi là 68 m

Khởi động trang 61 Toán 9 Tập 2 Cánh diều | Giải Toán 9

Làm thế nào để xác định được chiều dài, chiều rộng của mảnh vườn trồng hoa nói trên?

Lời giải:

Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x­2 (m) (x1 > 0, x­2 > 0).

Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, mảnh vườn dạng hình chữ nhật có chu vi là 68 m nên nửa chu vi của mảnh vườn là 68 : 2 = 34 (m), do đó x1 + x­2 = 34.

Diện tích mảnh vườn hình chữ nhật là 240 m2, do đó x1x2 = 240.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 34x + 240 = 0.

Phương trình trên có các hệ số a = 1, b = –34, c = 240.

Do b = –34 nên b’ = –17.

Ta có: ∆’ = (–17)2 – 1.240 = 49 > 0.

Do ∆’ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=17+491=17+7=24;x2=17491=177=10.

Cả hai giá trị trên đều thỏa mãn điều kiện lớn hơn 0.

Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 24 (m) và 10 (m) (do chiều dài luôn lớn hơn chiều rộng).

Lời giải bài tập Toán 9 Bài 3: Định lí Viète hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác: