X

Toán 9 Chân trời sáng tạo

Cho hai đường tròn (A; 6 cm) và (B; 4 cm) cắt nhau tại C và D, AB = 8 cm. Gọi K,I


Câu hỏi:

Cho hai đường tròn (A; 6 cm) và (B; 4 cm) cắt nhau tại C và D, AB = 8 cm. Gọi K, I lần lượt là giao điểm của hai đường tròn đã cho với đoạn thẳng AB (Hình 21).

Cho hai đường tròn (A; 6 cm) và (B; 4 cm) cắt nhau tại C và D, AB = 8 cm. Gọi K,I (ảnh 1)

a) Tính độ dài của các đoạn thẳng CA, CB, DA và DB.

b) Điểm I có phải là trung điểm của đoạn thẳng AB không?

c) Tính độ dài của đoạn thẳng IK.

Trả lời:

a) Vì hai đường tròn (A; 6 cm) và (B; 4 cm) cắt nhau tại C và D nên C, D cùng nằm trên hai đường tròn (A; 6 cm) và (B; 4 cm), do đó AC = AD = 6 cm và BC = BD = 4 cm.

b) Do I là giao điểm của đường tròn (B; 4 cm) với đoạn thẳng AB nên I nằm giữa hai điểm A, B và I nằm trên đường tròn (B; 4 cm), do đó BI = 4 cm.

Vì I nằm giữa hai điểm A, B nên ta có: AI + IB = AB

Suy ra AI = AB – IB = 8 – 4 = 4 (cm).

Ta có I nằm giữa hai điểm A, B và AI = BI nên I là trung điểm của đoạn thẳng AB.

c) Do K là giao điểm của đường tròn (A; 6 cm) với đoạn thẳng AB nên K nằm trên đường tròn (A; 6 cm), do đó AK = 6 cm.

Ta có AI < AK (4 cm < 6 cm) nên I nằm giữa hai điểm A, K.

Do đó AI + IK = AK

Suy ra IK = AK – AI = 6 – 4 = 2 (cm).

Vậy IK = 2 cm.

Xem thêm lời giải bài tập Toán 9 Chân trời sáng tạo hay, chi tiết:

Câu 1:

Hãy chỉ ra các bộ phận có dạng đường tròn của chiếc xe đạp trong hình dưới đây. Em hãy tìm thêm một số hình ảnh về đường tròn trong thực tế.

Hãy chỉ ra các bộ phận có dạng đường tròn của chiếc xe đạp trong hình dưới đây.  (ảnh 1)

Xem lời giải »


Câu 2:

Mở một chiếc compa sao cho hai đầu compa cách nhau một khoảng R cho trước. Tì đầu nhọn của compa lên một điểm O cố định trên tờ giấy, xoay compa để đầu bút M của compa vạch trên giấy một đường cong. Nêu nhận xét về các khoảng cách từ một điểm M tuỳ ý trên đường cong vừa vẽ đến điểm O.

Mở một chiếc compa sao cho hai đầu compa cách nhau một khoảng R (ảnh 1)

Xem lời giải »


Câu 3:

a) Cho đường tròn (O; R).

i) Lấy điểm A nằm trên đường tròn. Vẽ đường thẳng AO cắt đường tròn tại điểm A’ khác A. Giải thích tại sao O là trung điểm của đoạn thẳng AA’.

ii) Lấy điểm B khác A thuộc đường tròn (O; R). Tìm điểm B’ sao cho O là trung điểm của đoạn thẳng BB’. Điểm B’ có thuộc đường tròn (O; R) không? Giải thích.

b) Cho đường tròn (O; R), d là đường thẳng đi qua tâm O. Lấy điểm M nằm trên đường tròn. Vẽ điểm M’ sao cho d là đường trung trực của đoạn thẳng MM’ (khi M thuộc d thì lấy M’ trùng với M). Điểm M’ có thuộc đường tròn (O; R) không? Giải thích.

a) Cho đường tròn (O; R).  i) Lấy điểm A nằm trên đường tròn. (ảnh 1)

Xem lời giải »


Câu 4:

Xác định tâm đối xứng và trục đối xứng của bánh xe trong Hình 7. Giải thích cách làm.

Xác định tâm đối xứng và trục đối xứng của bánh xe trong Hình 7. Giải thích cách làm. (ảnh 1)

Xem lời giải »


Câu 5:

Xác định vị trí tương đối của (O; R) và (O’; R’) trong mỗi trường hợp sau:

a) OO’ = 18; R = 10; R’ = 6;

b) OO’ = 2; R = 9; R’ = 3;

c) OO’ = 13; R = 8; R’ = 5;

d) OO’ = 17; R = 15; R’ = 4.

Xem lời giải »