Bài 5.30 trang 110 Toán 9 Kết nối tri thức Tập 1
Cho đường tròn (O) đường kính AB, tiếp tuyến xx' tại A và tiếp tuyến yy' tại B của (O). Một tiếp tuyến thứ ba của (O) tại điểm P (P khác A và B) cắt xx' tại M và cắt yy' tại N.
Giải Toán 9 Luyện tập chung - Kết nối tri thức
Bài 5.30 trang 110 Toán 9 Tập 1: Cho đường tròn (O) đường kính AB, tiếp tuyến xx' tại A và tiếp tuyến yy' tại B của (O). Một tiếp tuyến thứ ba của (O) tại điểm P (P khác A và B) cắt xx' tại M và cắt yy' tại N.
a) Chứng minh rằng MN = MA + NB.
b) Đường thẳng đi qua O và vuông góc với AB cắt NM tại Q. Chứng minh rằng Q là trung điểm của đoạn MN.
c) Chứng minh rằng AB tiếp xúc với đường tròn đường kính MN.
Lời giải:
a) MA và MC là hai tiếp tuyến cắt nhau của (O) nên MA = MC.
NB và NC là hai tiếp tuyến cắt nhau của (O) nên NA = NC.
Ta có: MN = MC + NC = MA + NB
b) Gọi K là giao điểm của AN và OQ.
Ta có: BN // OK (vì cùng vuông góc với AB) và O là trung điểm của AB.
Suy ra OK là đường trung bình của tam giác ABN.
Do đó K là trung điểm của AN.
Lại có: AM // QK (vì cùng vuông góc với AB) và K là trung điểm của AN.
Suy ra QK là đường trung bình của tam giác AMN.
Do đó Q là trung điểm của MN.
c) OK là đường trung bình của tam giác ABN nên
QK là đường trung bình của tam giác AMN nên
Suy ra: /span> hay OQ = AQ = BQ.
Do đó O thuộc đường tròn đường kính MN.
Mà OQ vuông góc với AB tại O nên AB là tiếp của đường tròn đường kính MN.
Lời giải bài tập Toán 9 Luyện tập chung hay, chi tiết khác: