Cho dây AB không qua tâm của đường tròn (O). Gọi A' và B' là hai điểm lần lượt
Câu hỏi:
Cho dây AB không qua tâm của đường tròn (O). Gọi A' và B' là hai điểm lần lượt đối xứng với A và B qua (O). Hỏi đường trung trực của A'B' có phải là trục đối xứng của (O) hay không? Tại sao?
Trả lời:
Vì A' và B' là hai điểm lần lượt đối xứng với A và B qua (O) nên OA = OA', OB = OB'.
Mà dây AB không qua tâm của đường tròn (O) nên OA = OB (đều là bán kính của đường tròn (O)).
Suy ra OA = OA' = OB = OB'.
Do đó, O thuộc đường trung trực của A'B'.
Vậy đường trung trực của A'B' là một trục đối xứng của (O).