X

Toán 9 Kết nối tri thức

Giải Toán 9 trang 110 Tập 1 Kết nối tri thức


Với Giải Toán 9 trang 110 Tập 1 trong Luyện tập chung Toán lớp 9 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 110.

Giải Toán 9 trang 110 Tập 1 Kết nối tri thức

Bài 5.29 trang 110 Toán 9 Tập 1: Khi chuyển động, giả sử đầu mũi kim dài của một chiếc đồng hồ vạch nên một đường tròn, kí hiệu là (T1), trong khi đầu mũi kim ngắn vạch nên một đường tròn khác, kí hiệu là (T2).

Bài 5.29 trang 110 Toán 9 Kết nối tri thức Tập 1

a) Hai đường tròn (T1) và (T2) có vị trí tương đối như thế nào?

b) Giả sử bán kính của (T1) và (T2) lần lượt là R1 và R2. Người ta vẽ trên mặt đồng hồ một họa tiết hình tròn có tâm nằm cách điểm trục kim đồng hồ một khoảng bằng 12R1 và có bán kính bằng 12R2.  Hãy cho biết vị trí tương đối của đường tròn (T3) đối với mỗi đường tròn (T1) và (T2). Vẽ ba đường tròn đó nếu R1 = 3 cm, R2 = 2 cm.

Lời giải:

a) Hai đường tròn (T1) và (T2) là hai đường tròn đồng tâm, (T1) chứa (T2).

b) Gọi tâm của (T1) là O, tâm của (T3) là O'.

Ta có: R3=12R1;=12R1<R1<R1+R3.

Suy ra: R1=12R1+12R1>12R1+12R2  nên R1 > OO′ + R3 hay OO′ < R1 − R3.

Do đó (T1) đựng (T3).

Ta có: R3=12R2;=12R1<R1<R1+R3 .

Suy ra: R2=12R2+12R2<12R1+12R2  nên R2 < OO′ + R3 hay OO′ > R2 − R3

Khi đó R2 − R3 < OO′ < R2 + R3.

Do đó (T2) và (T3) cắt nhau.

Vậy (T1) đựng (T3); (T2) và (T3) cắt nhau.

• Với R1 = 3 cm, R2 = 2 cm, ta có hình vẽ sau:

Bài 5.29 trang 110 Toán 9 Kết nối tri thức Tập 1

Bài 5.30 trang 110 Toán 9 Tập 1: Cho đường tròn (O) đường kính AB, tiếp tuyến xx' tại A và tiếp tuyến yy' tại B của (O). Một tiếp tuyến thứ ba của (O) tại điểm P (P khác A và B) cắt xx' tại M và cắt yy' tại N.

a) Chứng minh rằng MN = MA + NB.

b) Đường thẳng đi qua O và vuông góc với AB cắt NM tại Q. Chứng minh rằng Q là trung điểm của đoạn MN.

c) Chứng minh rằng AB tiếp xúc với đường tròn đường kính MN.

Lời giải:

Bài 5.30 trang 110 Toán 9 Kết nối tri thức Tập 1

a) MA và MC là hai tiếp tuyến cắt nhau của (O) nên MA = MC.

NB và NC là hai tiếp tuyến cắt nhau của (O) nên NA = NC.

Ta có: MN = MC + NC = MA + NB

b) Gọi K là giao điểm của AN và OQ.

Ta có: BN // OK (vì cùng vuông góc với AB) và O là trung điểm của AB.

Suy ra OK là đường trung bình của tam giác ABN.

Do đó K là trung điểm của AN.

Lại có: AM // QK (vì cùng vuông góc với AB) và K là trung điểm của AN.

Suy ra QK là đường trung bình của tam giác AMN.

Do đó Q là trung điểm của MN.

c) OK là đường trung bình của tam giác ABN nên OK=12NB.

QK là đường trung bình của tam giác AMN nên QK=12MA.

Suy ra: OQ=OK+QK=12NB+12MA=12MN /span> hay OQ = AQ = BQ.

Do đó O thuộc đường tròn đường kính MN.

Mà OQ vuông góc với AB tại O nên AB là tiếp của đường tròn đường kính MN.

Bài 5.31 trang 110 Toán 9 Tập 1: Cho đường tròn (O) và (O') tiếp xúc ngoài với nhau tại A và cùng tiếp xúc với đường thẳng d tại B và C (khác A), trong đó B ∈ (O) và C ∈ (O′). Tiếp tuyến của (O) tại A cắt BC tại M. Chứng minh rằng:

a) Đường thẳng MA tiếp xúc với (O');

b) Điểm M là trung điểm của đoạn thẳng BC, từ đó suy ra ABC là tam giác vuông.

Lời giải:

Bài 5.31 trang 110 Toán 9 Kết nối tri thức Tập 1

a) A thuộc (O') và O'A vuông góc với MA nên MA là tiếp tuyến tại A của (O).

b) MA và MB là hai tiếp tuyến cắt nhau của (O) nên MA = MB.

MA và MC là hai tiếp tuyến cắt nhau của (O) nên MA = MC.

Suy ra MB = MC = MA hay M là trung điểm của BC.

Do đó tam giác ABC vuông tại A.

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: