Hai dạng phương trình quy về phương trình bậc hai (bài tập + lời giải)
Haylamdo sưu tầm bài viết phương pháp giải bài tập Hai dạng phương trình quy về phương trình bậc hai lớp 10 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập Hai dạng phương trình quy về phương trình bậc hai.
Hai dạng phương trình quy về phương trình bậc hai (bài tập + lời giải)
1. Phương pháp giải
a) Phương trình dạng
Để giải phương trình , ta thực hiện như sau:
+ Bình phương hai vế và giải phương trình nhận được;
+ Thử lại các giá trị x tìm được ở trên có thỏa mãn phương trình đã cho hay không và kết luận nghiệm.
b) Phương trình dạng .
Để giải phương trình , ta thực hiện như sau:
+ Bình phương hai vế và giải phương trình nhận được;
+ Thử lại các giá trị x tìm được ở trên có thỏa mãn phương trình đã cho hay không và kết luận nghiệm.
2. Ví dụ minh họa
Ví dụ 1. Giải phương trình:
a)
b)
Hướng dẫn giải:
a) Bình phương hai vế của phương trình ta được:
2x2 – 4x – 2 = x2 – x – 2
⇔ x2 – 3x = 0
⇔ x = 0 hoặc x = 3
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có x = 3 thỏa mãn.
Vậy nghiệm của phương trình đã cho là x = 3.
b) Bình phương hai vế của phương trình ta được:
2x2 – 3x – 5 = x2 – 7.
⇔ x2 – 3x + 2 = 0.
⇔ x = 1 hoặc x = 2.
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = Æ.
Ví dụ 2. Giải các phương trình sau:
a)
b)
Hướng dẫn giải:
a) Bình phương hai vế của phương trình ta được:
2x2 + x + 3 = 1 – 2x + x2
⇔ x2 + 3x + 2 = 0
⇔ x = –1 hoặc x = –2
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy x = –1 hoặc x = –2 thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = {–1; –2}.
b) Bình phương hai vế của phương trình ta được:
3x2 – 13x + 14 = x2 – 6x + 9
⇔ 2x2 – 7x + 5 = 0
⇔ x = 1 hoặc
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = Æ.
3. Bài tập tự luyện
Bài 1. Nghiệm của phương trình là
A. ;
B. ;
C. ;
D. .
Bài 2. Tập nghiệm của phương trình là
A. T = [2; 6];
B. T = ∅;
C. T = {6};
D. T = {2; 6}.
Bài 3. Tổng tất cả các nghiệm của phương trình là:
A. 3;
B. 4;
C. –1;
D. –3.
Bài 4. Tập nghiệm của phương trình là:
A. S = ∅;
B. ;
C. ;
D. .
Bài 5. Số nghiệm của phương trình là:
A. Vô số;
B. 0;
C. 1;
D. 2.
Bài 6. Nghiệm của phương trình thuộc tập nào dưới đây?
A. (4; 5];
B. [5; 6);
C. (5; 6);
D. [5; 6].
Bài 7. Số nghiệm của phương trình là:
A. 4;
B. 1;
C. 3;
D. 2.
Bài 8. Giá trị của tham số m để phương trình có hai nghiệm phân biệt là
A. m ∈ (-∞; 1);
B. m ∈ (1; +∞);
C. m ∈ [1; +∞);
D. m ∈ (-∞; 1].
Bài 9. Giá trị của tham số m để phương trình có nghiệm là
A. m ≤ 1;
B. m ∈ (1; +∞);
C. m > 2;
D. m ≥ 2.
Bài 10. Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm thuộc khoảng ?
A. 1;
B. 4;
C. 3;
D. 0.