Lý thuyết Giá trị lượng giác của một góc bất kì từ 0o đến 180o hay, chi tiết - Toán lớp 10


Lý thuyết Giá trị lượng giác của một góc bất kì từ 0o đến 180o hay, chi tiết

Tài liệu Lý thuyết Giá trị lượng giác của một góc bất kì từ 0o đến 180o hay, chi tiết Toán lớp 10 sẽ tóm tắt kiến thức trọng tâm về Giá trị lượng giác của một góc bất kì từ 0o đến 180o từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 10.

Lý thuyết Giá trị lượng giác của một góc bất kì từ 0o đến 180o hay, chi tiết

1. Định nghĩa

Với mỗi góc α (0o ≤ α ≤ 180o) ta xác định một điểm M trên nửa đường tròn đơn vị sao cho ∠ xOM = α và giả sử điểm M có tọa độ M(xo, yo).

Khi đó ta có định nghĩa:

sin của góc α là yo, kí hiệu sinα = yo;

cosin của góc α là xo, kí hiệu cosα = xo

tang của góc α là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án (xo ≠ 0),

kí hiệu tanα = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

cotang của góc α là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án (yo ≠ 0), kí hiệu cotα = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án .

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

2. Tính chất

Trên hình bên ta có dây cung NM song song với trục Ox và nếu ∠ xOM = α thì ∠xON = 180o – α. Ta có yM = yN = yo, xM = –xN = xo. Do đó

sin α = sin(180o – α)

cos α = –cos(180o – α)

tan α = –tan(180o – α)

cot α = –cot(180o – α)

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hay lắm đó

3. Giá trị lượng giác của các góc đặc biệt

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trong bảng kí hiệu “||” để chỉ giá trị lượng giác không xác định.

Chú ý. Từ giá trị lượng giác của các góc đặc biệt đã cho trong bảng và tính chất trên, ta có thể suy ra giá trị lượng giác của một số góc đặc biệt khác.

Chẳng hạn:

sin 120o = sin(180o – 60o) = sin60o = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

cos 135o = cos(180o – 45o) = –cos45o = -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

4. Góc giữa hai vectơ

a) Định nghĩa

Cho hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án đều khác vectơ 0 .Từ một điểm O bất kì ta vẽ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Góc ∠AOB với số đo từ 0o đến 180o được gọi là góc giữa hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án . Ta kí hiệu góc giữa hai vectơ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp ánToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Nếu ( Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ) = 90o thì ta nói rằng Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án vuông góc với nhau, kí hiệu là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) Chú ý. Từ định nghĩa ta có Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có lời giải hay khác: