Xác định tâm và bán kính của đường tròn (bài tập + lời giải)
Haylamdo sưu tầm bài viết phương pháp giải bài tập Xác định tâm và bán kính của đường tròn lớp 10 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập Xác định tâm và bán kính của đường tròn.
Xác định tâm và bán kính của đường tròn (bài tập + lời giải)
1. Phương pháp giải
⦁ Nếu phương trình đường tròn (C) được cho dạng:
(x – a)2 + (y – b)2 = R2.
Tâm của đường tròn (C) là: I(a; b).
Bán kính của đường tròn (C) là R.
⦁ Nếu phương trình đường tròn (C) được cho dạng:
x2 + y2 – 2ax – 2by + c = 0 (a2 + b2 – c > 0)
Tâm của đường tròn là I(a; b)
Bán kính của đường tròn là .
2. Ví dụ minh họa
Ví dụ 1. Xác định tâm và bán kính của đường tròn (C): (x + 5)2 + (y – 4)2 = 16.
Hướng dẫn giải:
Tâm của đường tròn là I(–5; 4).
Bán kính của đường tròn là R = 4.
Ví dụ 2. Cho đường tròn (C): x2 + y2 – 6x + 4y – 12 = 0. Xác định tâm I và bán kính R của đường tròn (C).
Hướng dẫn giải:
Đường tròn có tâm I(3; –2), bán kính R =
3. Bài tập tự luyện
Bài 1. Trong mặt phẳng tọa độ Oxy, cho đường tròn x2 + y2 – 2x + 6y – 1 = 0. Tâm của đường tròn (C) có tọa độ là
A. (–2; 6);
B. (–1; 3);
C. (2; –6);
D. (1; –3).
Bài 2. Trong mặt phẳng tọa độ Oxy, tâm I và bán kính R của đường tròn (C): x2 + y2 – 2x + 6y – 8 = 0 lần lượt là
A. I(–1; –3), R = ;
B. I(1; –3), R = ;
C. I(1; –3), R = ;
D. I(1; 3), R = .
Bài 3. Trong mặt phẳng tọa độ Oxy, đường tròn (x – 3)2 + (y + 7)2 = 9 có tâm và bán kính là
A. I(–3; –7), R = 9;
B. I(–3; 7), R = 9;
C. I(3; –7), R = 3;
D. I(3; 7), R = 3.
Bài 4. Trong mặt phẳng tọa độ Oxy, đường tròn x2 + y2 – 10y – 24 = 0 có bán kính bằng bao nhiêu?
A. 49;
B. 7;
C. 1;
D. .
Bài 5. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 + 2(2x + 3y – 6) = 0 có tâm là
A. I(–2; –3);
B. I(2; 3);
C. I(4; 6);
D. I(–4; –6).
Bài 6. Cho đường cong (Cm): x2 + y2 – 8x + 10y + m = 0. Với giá trị nào của m thì (Cm) là đường tròn có bán kính bằng 7?
A. m = 4;
B. m = 8;
C. m = –4;
D. m = –8.
Bài 7. Trong mặt phẳng tọa độ Oxy, bán kính của đường tròn (C): 3x2 + 3y2 – 6x + 9y – 9 = 0 là
A.
B.
C. R = 25;
D.
Bài 8. Trong mặt phẳng tọa độ Oxy, cho đường tròn 2x2 + 2y2 – 8x + 4y – 1 = 0 có tâm là
A. I(–8; 4);
B. I(2; –1);
C. I(8; –4);
D. I(–2; 1).
Bài 9. Cho hai điểm A(–2; 1) và B(3; 5). Khẳng định nào sau đây là đúng về đường tròn (C) có đường kính AB?
A. Đường tròn (C) có phương trình là x2 + y2 + x + 6y – 1 = 0;
B. Đường tròn (C) có tâm
C. Đường tròn (C) có bán kính
D. Cả A, B, C đều đúng.
Bài 10. Tâm đường tròn (C): x2 + y2 – 10x + 1 = 0 cách trục Oy một khoảng bằng
A. –5;
B. 0;
C. 5;
D. 10.