Cho tam giác ABC. Gọi D là trung điểm của AB
Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.
Giải vở thực hành Toán 7 Bài tập ôn tập cuối năm
Bài 8 trang 107 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC. Gọi D là trung điểm của AB. Trên tia đối của tia DC, lấy điểm M sao cho DM = DC.
a) Chứng minh rằng ∆ADM = ∆BDC. Từ đó suy ra AM = BC và AM // BC.
b) Gọi E là trung điểm của AC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng AN // BC.
c) Chứng minh rằng ba điểm M, A, N thẳng hàng và A là trung điểm của đoạn MN.
Lời giải:
a) ∆ADM và ∆BDC có
AD = DB (do D là trung điểm của AB)
(hai góc đối đỉnh)
DM = DC (giả thiết)
Nên ∆ADM = ∆BDC (c.g.c).
Suy ra AM = BC (hai cạnh tương ứng) và (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AM // BC (dấu hiệu nhận biết hai đường thẳng song song).
b) ∆AEN và ∆CEB có:
AE = CE (E là trung điểm của AC)
(hai góc đối đỉnh)
EN = EB (theo giả thiết)
Nên ∆AEN = ∆CEB (c.g.c).
Suy ra (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AN // BC (dấu hiệu nhận biết hai đường thẳng song song).
c) Ta có AM // BC (chứng minh trên),
AN // BC (chứng minh trên) nên AM và AN trùng nhau (theo tiên đề Euclid).
Từ đó suy ra ba điểm M, A, N thẳng hàng.
Ta lại có AM = BC (chứng minh trên), AN = BC (chứng minh trên – do ∆AEN = ∆CEB),
do đó AM = AN.
Từ đó suy ra A là trung điểm của đoạn MN.