Bài 6 trang 29 Chuyên đề Toán 10
Giải Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học
Haylamdo biên soạn và sưu tầm lời giải Bài 6 trang 29 Chuyên đề Toán 10 trong Bài 1: Phương pháp quy nạp toán học. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.
Bài 6 trang 29 Chuyên đề Toán 10: Chứng minh nn > (n + 1)n – 1 với n ∈ ℕ*, n ≥ 2.
Lời giải:
+) Khi n = 2, ta có: 22 > (2 + 1)2 – 1 4 > 3.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý (k ≥ 2) mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (k + 1)k + 1 > [(k+1) + 1](k + 1) – 1.
Thật vậy, theo giả thiết quy nạp ta có: kk > (k + 1)k – 1.
Suy ra: kk . (k + 1)k + 1 > (k + 1)k – 1 . (k + 1)k + 1
kk . (k + 1)k + 1 > (k + 1)2k
kk . (k + 1)k + 1 > [(k + 1)2]k
kk . (k + 1)k + 1 > (k2 + 2k + 1)k > (k2 + 2k)k = [k(k + 2)]k = kk . (k + 2)k
(k + 1)k + 1 > (k + 2)k = (k + 2)(k + 1) – 1
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ∈ ℕ*, n ≥ 2.