Bài 6 trang 29 Chuyên đề Toán 10


Giải Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học

Haylamdo biên soạn và sưu tầm lời giải Bài 6 trang 29 Chuyên đề Toán 10 trong Bài 1: Phương pháp quy nạp toán học. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.

Bài 6 trang 29 Chuyên đề Toán 10: Chứng minh nn > (n + 1)n – 1 với n ∈ ℕ*, n ≥ 2.

Lời giải:

+) Khi n = 2, ta có: 22 > (2 + 1)2 – 1 4 > 3.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý (k ≥ 2) mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (k + 1)k + 1 > [(k+1) + 1](k + 1) – 1.

Thật vậy, theo giả thiết quy nạp ta có: kk > (k + 1)k – 1.

Suy ra: kk . (k + 1)k + 1 > (k + 1)k – 1 . (k + 1)k + 1

kk . (k + 1)k + 1 > (k + 1)2k

kk . (k + 1)k + 1 > [(k + 1)2]k

kk . (k + 1)k + 1 > (k2 + 2k + 1)k > (k2 + 2k)k = [k(k + 2)]k = kk . (k + 2)k

(k + 1)k + 1 > (k + 2)k = (k + 2)(k + 1) – 1

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ∈ ℕ*, n ≥ 2.

Xem thêm lời giải bài tập Chuyên đề Toán 10 Cánh diều hay, chi tiết khác: