Khám phá 2 trang 52 Chuyên đề Toán 10
Giải Chuyên đề Toán 10 Bài 2: Hypebol
Haylamdo biên soạn và sưu tầm lời giải Khám phá 2 trang 52 Chuyên đề Toán 10 trong Bài 2: Hypebol. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.
Khám phá 2 trang 52 Chuyên đề Toán 10: Cho điểm M(x; y) nằm trên hypebol
a) Chứng minh rằng F1M2 – F2M2 = 4cx.
b) Giả sử điểm M(x; y) thuộc nhánh đi qua A1(–a; 0) (Hình 5a). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF2 – MF1 = 2a đã biết để chứng minh . Từ đó, chứng minh các công thức: ;
c) Giả sử điểm M(x; y) thuộc nhánh đi qua A2(a; 0) (Hình 5 b). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF1 – MF2 = 2a đã biết để chứng minh . Từ đó, chứng minh các công thức: ;
Lời giải:
a) F1M2 = [x – (– c)]2 + (y – 0)2 = (x + c)2 + y2 = x2 + 2cx + c2 + y2;
F2M2 = (x – c)2 + (y – 0)2 = x2 – 2cx + c2 + y2.
F1M2 – F2M2 = (x2 + 2cx + c2 + y2) – (x2 – 2cx + c2 + y2) = 4cx.
b) Ta có: MF12 – MF22 = 4cx (MF1 + MF2)(MF1 – MF2) = 4cx (MF1 + MF2)(–2a) = 4cx
MF1 + MF2 = = –x. Khi đó:
(MF1 + MF2) + (MF1 – MF2) = – + (–2a) 2MF1 = – – 2a
MF1 =
(MF1 + MF2) – (MF1 – MF2) = –– (–2a) 2MF2 = – + 2a
MF2 = a –x.
c) Ta có: MF12 – MF22 = 4cx (MF1 + MF2)(MF1 – MF2) = 4cx (MF1 + MF2)2a = 4cx
MF1 + MF2 = = . Khi đó:
(MF1 + MF2) + (MF1 – MF2) = + 2a 2MF1 = + 2a
MF1 = a + x.
(MF1 + MF2) – (MF1 – MF2) = – 2a 2MF2 = – 2a
MF2 = – a + x.