Đa giác lồi n cạnh gọi là n-giác đều nếu tất cả các cạnh của nó
Bài 5: Hai hình bằng nhau
Bài 22 (trang 23 sgk Hình học 11 nâng cao): Đa giác lồi n cạnh gọi là n-giác đều nếu tất cả các cạnh của nó bằng nhau và tất cả các góc của nó bằng nhau. Chứng tỏ rằng hai n-giác đều bằng nhau khi và chỉ khi chúng có cạnh bằng nhau
Lời giải:
Theo định nghĩa. Hai n-giác đều bằng nhau thì cạnh bằng nhau. Ngược lại giả sử hai n-giác đều A1A2…An và A'1A'2...A'n có cạnh bằng nhau. Khi đó nếu gọi O và O’ lần lượt là tâm các đường tròn ngoại tiếp hai đa giác đó thì hai tam giác OA1A2 và O’A’1A’2 bằng nhau.
Vậy có phép dời hình F biến tam giác OA1A2 thành tam giác O'A'1A'2. Vì hai tam giác OA2A3 và O'A'2A'3 cùng bằng nhau nên F biến điểm A3 thành điểm A'3. (Vì A3 không thể biến thành A’1).
Lập luận tương tự ta cũng có F biến các điểm A4….An lần lượt thành các điểm A'4 ….A'n. Như vậy hai đa giác đều đã cho bằng nhau.