Xét vị trí tương đối của mỗi cặp đường thẳng sau a) d1: 2x – 3y + 5 = 0


Xét vị trí tương đối của mỗi cặp đường thẳng sau:

Giải sách bài tập Toán 10 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 40 trang 82 SBT Toán 10 Tập 2: Xét vị trí tương đối của mỗi cặp đường thẳng sau:

a) d1: 2x – 3y + 5 = 0 và d2: 2x + y – 1 = 0;

b) d3:Xét vị trí tương đối của mỗi cặp đường thẳng sau a) d1: 2x – 3y + 5 = 0 và d4: x + 3y – 5 = 0;

c) d5: Xét vị trí tương đối của mỗi cặp đường thẳng sau a) d1: 2x – 3y + 5 = 0d6: Xét vị trí tương đối của mỗi cặp đường thẳng sau a) d1: 2x – 3y + 5 = 0.

Lời giải:

a) Vectơ pháp tuyến của d1 là: n1=(2;-3)

Vectơ pháp tuyến của d2 là: n2=(2;1)

Ta có: 2231 suy ra hai vectơ n1n2 không cùng phương.

Do đó d1 và d2 cắt nhau.

b) Vectơ chỉ phương của d3 là: u3=(-3;1) nên vectơ pháp tuyến của d3 là: n3=(1;3).

Vectơ pháp tuyến của d4 là: n4=(1;3)

Ta có n3=n4 nên n3n4 cùng phương hay d3 song song hoặc trùng d­4.

Lấy điểm A(-1; 3) thuộc d3.

Thay tọa độ A(-1; 3) vào d4 ta có: - 1 + 3.3 – 5 = 3 = 0 (vô lí).

Suy ra A(-1; 3) không thuộc d4.

Vậy 2 đường thẳng trên song song.

c) Vectơ chỉ phương của d5u5=(-2;1)

Vectơ chỉ phương của d6u6=(2;-1)

Ta thấy u5=1.u6 nên 2 vectơ u5u6 cùng phương. Do đó hai đường thẳng d5 và d6 song song hoặc trùng nhau.

Lấy điểm M(2; -1) thuộc đường thẳng d5. Thay tọa độ điểm M vào phương trình tham số của d6 ta có:

Xét vị trí tương đối của mỗi cặp đường thẳng sau a) d1: 2x – 3y + 5 = 0t'=2

Suy ra M thuộc d6.

Vậy d5 trùng d6.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: