Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau a) A(- 3; 1) và ∆1 2x + y – 4 = 0


Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau:

Giải sách bài tập Toán 10 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 42 trang 82 SBT Toán 10 Tập 2: Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau:

a) A(- 3; 1) và ∆1: 2x + y – 4 = 0;

b) B(1; - 3) và Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau a) A(- 3; 1) và ∆1 2x + y – 4 = 0.

Lời giải:

a) Ta có: vectơ pháp tuyến của đường thẳng Δ1n1=(2;1)

Suy ra d(A,Δ1)= Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau a) A(- 3; 1) và ∆1 2x + y – 4 = 0.

b) Δ2 có vectơ chỉ phương là u2=(3;-1) và đi qua điểm A(-3; 1).

Vectơ pháp tuyến của đường thẳng Δ2 là: n2=(1;3).

Suy ra phương trình đường thẳng Δ2 là: x + 3 + 3( y – 1) = 0 hay x + 3y = 0

d(B,Δ2)= Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau a) A(- 3; 1) và ∆1 2x + y – 4 = 0.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: