Cho hypebol (H) có phương trình chính tắc x^2/a^2+y^2/b^2=1 với a > 0, b > 0 và đường thẳng y = n


Cho hypebol (H) có phương trình chính tắc: =1 với a > 0, b > 0 và đường thẳng y = n cắt (H) tại hai điểm P, Q phân biệt. Chứng minh hai điểm P và Q đối xứng nhau qua trục Oy.

Giải sách bài tập Toán 10 Bài 6: Ba đường conic

Bài 68 trang 97 SBT Toán 10 Tập 2: Cho hypebol (H) có phương trình chính tắc: x2a2y2b2=1 với a > 0, b > 0 và đường thẳng y = n cắt (H) tại hai điểm P, Q phân biệt. Chứng minh hai điểm P và Q đối xứng nhau qua trục Oy.

Lời giải:

Thay y = n vào phương trình chính tắc của Parabol ta có: x2a2n2b2=1

Suy ra x2=a2.1+n2b2

Cho hypebol (H) có phương trình chính tắc x^2/a^2+y^2/b^2=1 với a > 0, b > 0 và đường thẳng y = n

Giả sử điểm Pa1+n2b2;n và Qa1+n2b2;n

Do Q và P có cùng tung độ và hoành độ đối nhau nên P và Q đối xứng nhau qua trục Oy

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: