Cho hình chóp ngũ giác S.ABCDE. Giả sử AB song song với DE


Cho hình chóp ngũ giác S.ABCDE. Giả sử AB song song với DE.

Giải sách bài tập Toán 11 Bài tập cuối chương 4 - Kết nối tri thức

Bài 4.57 trang 73 SBT Toán 11 Tập 1: Cho hình chóp ngũ giác S.ABCDE. Giả sử AB song song với DE.

a) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBE).

b) Xác định giao tuyến của hai mặt phẳng (SAB) và (SDE).

c) Giả sử giao tuyến của hai mặt phẳng (SAE) và (SBC) song song với đường thẳng AE. Chứng minh rằng AE // BC.

Lời giải:

Cho hình chóp ngũ giác S.ABCDE. Giả sử AB song song với DE

a) Gọi O là giao điểm của hai đường thẳng AD và BE thì SO là giao tuyến của hai mặt phẳng (SAD) và (SBE).

b) Vì AB // DE nên giao tuyến của hai mặt phẳng (SAB) và (SDE) là đường thẳng m đi qua S và song song với AB.

c) Gọi d là giao tuyến của hai mặt phẳng (SAE) và (SBC) thì d // AE. Vì d nằm trong mặt phẳng (SBC) nên AE // (SBC).

Mặt phẳng (SBC) song song với đường thẳng AE nằm trong mặt phẳng (ABCDE) nên giao tuyến BC của hai mặt phẳng đó song song với AE.

Vậy AE // BC.

Lời giải SBT Toán 11 Bài tập cuối chương 4 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác: