Một phần khung của một cây cầu gồm các thanh thép tạo thành các tam giác vuông cân như Hình 2


Một phần khung của một cây cầu gồm các thanh thép tạo thành các tam giác vuông cân như Hình 2. Biết rằng cạnh CD có độ dài a (m). Tính độ dài của đoạn BF theo a.

Giải sách bài tập Toán 9 Bài 4: Biến đổi đơn giản biểu thức chứa căn thức bậc hai - Chân trời sáng tạo

Bài 8 trang 51 sách bài tập Toán 9 Tập 1: Một phần khung của một cây cầu gồm các thanh thép tạo thành các tam giác vuông cân như Hình 2. Biết rằng cạnh CD có độ dài a (m). Tính độ dài của đoạn BF theo a.

Một phần khung của một cây cầu gồm các thanh thép tạo thành các tam giác vuông cân như Hình 2

Lời giải:

Do ∆ABC cân tại B nên BA = BC.

Do ∆ACD cân tại C nên CA = CD.

Do ∆ADE cân tại D nên DA = DE.

Do ∆AEF cân tại E nên EA = EF.

Xét ∆ACD vuông tại C, theo định lí Pythagore, ta có:

DA=CA2+CD2=2CD2=CD2=a2(m).

Xét ∆ADE vuông tại D, theo định lí Pythagore, ta có:

EA=DA2+DE2=2DA2=DA2=a22=2a (m).

Xét ∆AEF vuông tại E, theo định lí Pythagore, ta có:

AF=EA2+EF2=2EA2=EA2=2a2=2a2(m).

Xét ∆ABC vuông tại B, theo định lí Pythagore, ta có:

CA=BA2+BC2=2BA2=BA2

Suy ra BA=CA2=CD2=a2=a22(m).

Từ đó, BF=BA+AF=a22+2a2=a22+4a22=5a22

Vậy BF=5a22 (m).

Lời giải SBT Toán 9 Bài 4: Biến đổi đơn giản biểu thức chứa căn thức bậc hai hay khác:

Xem thêm giải sách bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: