Cho đường tròn (C): (x – 1)^2 + (y + 2)^2 = 2. Viết phương trình tiếp tuyến d của (C) biết đường d song song với đường thẳng d’: x + y + 3 = 0. A. d: x + y + 1 = 0; B. d: x – y – 1 = 0; C.
Câu hỏi:
Cho đường tròn (C): (x – 1)2 + (y + 2)2 = 2. Viết phương trình tiếp tuyến d của (C) biết đường d song song với đường thẳng d’: x + y + 3 = 0.
A. d: x + y + 1 = 0;
B. d: x – y – 1 = 0;
C. d: x + y – 1 = 0;
D. d: x + y + 3 = 0.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Đường tròn (C) có tâm I (1; – 2) và bán kính R = \(\sqrt 2 \).
Phương trình đường thẳng d // d’ nên có dạng x + y + m = 0 (m ≠ 3).
Vì d là tiếp tuyến của đường tròn (C) nên khoảng cách từ tâm I đến đường thẳng d bằng bán kính của đường tròn. Do đó ta có:
d(I; (C)) = \(\frac{{\left| {1 - 2 + m} \right|}}{{\sqrt 2 }} = \sqrt 2 \)
⇔ |m – 1| = 2
⇔ m – 1 = 2 hoặc m – 1 = – 2
⇔ m = 3 (không thỏa mãn) hoặc m = – 1 (thỏa mãn).
Vậy phương trình tiếp tuyến cần tìm là x + y – 1 = 0.
Xem thêm bài tập Toán 10 CD có lời giải hay khác:
Câu 1:
Tọa độ tâm I và bán kính R của đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 25\] là:
Xem lời giải »
Câu 2:
Cho đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 4\]có tọa độ tâm I(a; b) và bán kính R = c. Nhận xét nào sau đây đúng về a, b và c:
Xem lời giải »
Câu 3:
Cho phương trình x2 + y2 – 2ax – 2by + c = 0. Điều kiện của a, b, c để phương trình đã cho là phương trình đường tròn:
Xem lời giải »
Câu 4:
Tọa độ tâm I và bán kính R của đường tròn (C): x2 + y2 = 16 là:
Xem lời giải »
Câu 5:
Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; – 1) là:
Xem lời giải »
Câu 6:
Viết phương trình tiếp tuyến của đường tròn (C): (x – 3)2 + (y + 1)2 = 5, biết tiếp tuyến song song với đường thẳng d: 2x + y + 7 = 0.
Xem lời giải »
Câu 7:
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\], biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.
Xem lời giải »