Giải Toán 10 trang 90 Tập 1 Cánh diều


Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 90 Tập 1 trong Bài 5: Tích của một số với một vectơ Toán lớp 10 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 90.

Giải Toán 10 trang 90 Tập 1 Cánh diều

Hoạt động 3 trang 90 Toán lớp 10 Tập 1: Cho I là trung điểm của đoạn thẳng AB và điểm M tùy ý. Chứng minh rằng MA+MB=2MI .

Lời giải:

Cho I là trung điểm của đoạn thẳng AB và điểm M tùy ý. Chứng minh rằng

Do I là trung điểm của AB nên IA+IB=0.

Khi đó: 

MA+MB=MI+IA+MI+IB=2MI+IA+IB

=2MI+0=2MI

Vậy MA+MB=2MI.

Hoạt động 4 trang 90 Toán lớp 10 Tập 1: Cho G là trọng tâm của tam giác ABC và điểm M tùy ý. Chứng minh rằng MA+MB+MC=3MG .

Lời giải:

Cho G là trọng tâm của tam giác ABC và điểm M tùy ý. Chứng minh rằng

Do G là trọng tâm của tam giác ABC nên GA+GB+GC=0.

Ta có:

MA+MB+MC

=MG+GA+MG+GB+MG+GC¯

=3MG+GA+GB+GC

=3MG+0=3MG

Vậy MA+MB+MC=3MG.

Luyện tập 3 trang 90 Toán lớp 10 Tập 1: Cho tam giác ABC có G là trọng tâm. Chứng minh AB+AC=3AG .

Lời giải:

Cho tam giác ABC có G là trọng tâm. Chứng minh vectơ AB + vectơ AC =3.vectơ AG

Do G là trọng tâm của tam giác ABC nên GA+GB+GC=0.

Ta có:

AB+AC=AG+GB+AG+GC

=2AG+GB+GC

=2AG+GB+GC+AGAG

=3AG+GB+GC+AG

=3AG+GB+GC+GA

=3AG+0=3AG.

Vậy AB+AC=3AG.

Lời giải bài tập Toán lớp 10 Bài 5: Tích của một số với một vectơ Cánh diều hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: