Hoạt động 1 trang 39 Toán 10 Tập 1 Cánh diều
Cho hàm số y = – 0,00188(x – 251,5) + 118
Giải Toán lớp 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Hoạt động 1 trang 39 Toán lớp 10 Tập 1: Cho hàm số y = – 0,00188(x – 251,5)2 + 118
a) Viết công thức xác định hàm số trên về dạng đa thức theo lũy thừa với số mũ giảm dần của x.
b) Bậc của đa thức trên bằng bao nhiêu?
c) Xác định hệ số của x2, hệ số của x và hệ số tự do.
Lời giải:
a) Ta có: y = – 0,00188(x – 251,5)2 + 118
⇔ y = – 0,00188(x2 – 503x + 63252,25) + 118
⇔ y = – 0,00188x2 + 0,94564x – 118,91423 + 118
⇔ y = – 0,00188x2 + 0,94564x – 0,91423
Vậy công thức hàm số được viết về dạng đa thức theo lũy thừa giảm dần của x là
y = – 0,00188x2 + 0,94564x – 0,91423.
b) Đa thức – 0,00188x2 + 0,94564x – 0,91423 có bậc là 2. (bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức)
c) Trong đa thức trên, ta có:
+ Hệ số của x2 là: –0,00188
+ Hệ số của x là: 0,94564
+ Hệ số do là: – 0,91423.
Lời giải bài tập Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng hay, chi tiết khác:
Luyện tập 4 trang 43 Toán lớp 10 Tập 1: Trong bài toán ở phần mở đầu, độ cao y (m) của một điểm thuộc vòng cung thành cầu cảng Sydney đạt giá trị lớn nhất là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)? ....
Bài 1 trang 43 Toán lớp 10 Tập 1: Trong các hàm số sau, hàm số nào là hàm số bậc hai? Với những hàm số bậc hai đó, xác định a, b, c lần lượt là hệ số của x2, hệ số của x và hệ số tự do. ....
Bài 2 trang 43 Toán lớp 10 Tập 1: Xác định parabol y = ax2 + bx + 4 trong mỗi trường hợp sau: ....
Bài 3 trang 43 Toán lớp 10 Tập 1: Vẽ đồ thị của mỗi hàm số sau: y = 2x2 – 6x + 4; y = – 3x2 – 6x – 3 ....
Bài 4 trang 43 Toán lớp 10 Tập 1: Cho đồ thị hàm số bậc hai ở Hình 15. Xác định trục đối xứng, tọa độ đỉnh của đồ thị hàm số. ....
Bài 5 trang 43 Toán lớp 10 Tập 1: Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau: y = 5x2 + 4x – 1; y = – 2x2 + 8x + 6. ....
Bài 6 trang 43 Toán lớp 10 Tập 1: Khi du lịch đến thành phố St.Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ tọa độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 ....