Luyện tập 4 trang 43 Toán 10 Tập 1 Cánh diều


Trong bài toán ở phần mở đầu, độ cao y (m) của một điểm thuộc vòng cung thành cầu cảng Sydney đạt giá trị lớn nhất là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Giải Toán lớp 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Luyện tập 4 trang 43 Toán lớp 10 Tập 1: Trong bài toán ở phần mở đầu, độ cao y (m) của một điểm thuộc vòng cung thành cầu cảng Sydney đạt giá trị lớn nhất là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Lời giải:

Cách 1: Ta có: y =  – 0,00188(x – 251,5)2 + 118

Vì (x – 251,5)2 ≥ 0 với mọi x

⇒ – 0,00188(x – 251,5)2 ≤ 0 với mọi x 

⇒ – 0,00188(x – 251,5)2 + 118 ≤ 118 với mọi x 

Hay y ≤ 118 với mọi x

Do đó giá trị lớn nhất của y là 118 khi x – 251,5 = 0 hay x = 251,5. 

Vậy độ cao lớn nhất cần tìm là 118 m.

Cách 2: Ta có: y =  – 0,00188(x – 251,5)2 + 118

Hay y = – 0,00188x2 + 0,94564x – 0,91423, đây chính là hàm số bậc hai. 

Ta có: a = – 0,00188 < 0 nên đồ thị hàm số trên có bề lõm hướng xuống dưới hay điểm đỉnh của đồ thị là điểm cao nhất, vậy giá trị lớn nhất cần tìm chính là tung độ của đỉnh. 

Ta có: b = 0,94564, c = – 0,91423,

∆ = (0,94564)2 – 4 . (– 0,00188) . (– 0,91423) = 0,88736

Suy ra: Δ4a=0,887364.0,00188=118

Vậy độ cao lớn nhất cần tìm là 118 m.

Lời giải bài tập Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: