Tìm số hạng chứa x^3 trong khai triển ( x + 1/2x)^5. A. 5/2x^3; B. –5/2x^3; C. 5/4x^3; D. –5/4x^3


Câu hỏi:

Tìm số hạng chứa x3 trong khai triển \[{\left( {x + \frac{1}{{2x}}} \right)^5}\].

A. \(\frac{5}{2}{x^3}\);
B. –\(\frac{5}{2}{x^3}\);
C. \(\frac{5}{4}{x^3}\);
D. –\(\frac{5}{4}{x^3}\).

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

Theo khai triển nhị thức Newton ta có:

\[{\left( {x + \frac{1}{{2x}}} \right)^5}\]

\[ = C_5^0.{x^5} + C_5^1.{x^4}.\frac{1}{{2x}} + C_5^2.{x^3}.{\left( {\frac{1}{{2x}}} \right)^2} + C_5^3.{x^2}.{\left( {\frac{1}{{2x}}} \right)^3} + C_5^4.x.{\left( {\frac{1}{{2x}}} \right)^4} + C_5^5.{\left( {\frac{1}{{2x}}} \right)^5}\]

\[ = {x^5} + 5.{x^4}.\frac{1}{{2x}} + 10.{x^3}.\frac{1}{{4.{x^2}}} + 10.{x^2}.\frac{1}{{8{x^3}}} + 5.x.\frac{1}{{16{x^4}}} + \frac{1}{{32{x^5}}}\]

\[ = {x^5} + \frac{5}{2}.{x^3} + \frac{5}{2}.x + \frac{5}{{4x}} + \frac{5}{{16{x^3}}} + \frac{1}{{32{x^5}}}\]

Vậy số hạng cần tìm là \(\frac{5}{2}{x^3}\).

Xem thêm bài tập Toán 10 Cánh diều có lời giải hay khác:

Câu 1:

Khai triển nhị thức (2x + y)5. Ta được kết quả là

Xem lời giải »


Câu 2:

Xét khai triển của \({\left( {2x + \frac{1}{2}} \right)^4}\). Gọi a là hệ số của x2 và b là hệ số của x trong khai triển. Tổng a + b là:

Xem lời giải »


Câu 3:

Trong khai triển của nhị thức (x – y)5, hệ số của x3.y3 là;

Xem lời giải »


Câu 4:

Tổng các hệ số trong khai triển \(P\left( x \right) = {\left( {1 + x} \right)^5}\) là:

Xem lời giải »


Câu 5:

Tìm hệ số của x2 trong khai triển \({\left( {3x - \frac{1}{{3{x^2}}}} \right)^5}\).

Xem lời giải »


Câu 6:

Trong khai triển \({\left( {x - \sqrt y } \right)^4}\), tổng của các số hạng chứa x4 và y2 là:

Xem lời giải »


Câu 7:

Cho biểu thức \({\left( {\sqrt {xy} + \frac{x}{y}} \right)^5}\) (x; y luôn dương). Gọi hệ số của x3y là a và hệ số của \(\frac{{{x^3}}}{y}\) là b. Tính a – b?

Xem lời giải »