Trong mặt phẳng tọa độ Oxy, cho hai điểm C(4; – 2), D(– 5; 11). Khi đó độ dài đoạn thẳng CD bằng: A. 4 căn bậc hai 5 ; B. 2 căn bậc hai 22; C. 5 căn bậc hai 10; D. căn bậc hai 82.
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho hai điểm C(4; – 2), D(– 5; 11). Khi đó độ dài đoạn thẳng CD bằng:
A. 4√5;
B. 2√22;
C. 5√10;
D. √82.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có CD=|→CD|=√(xD−xC)2+(yD−yC)2
=√(−5−4)2+(11+2)2=5√10.
Vậy CD=5√10.
Do đó ta chọn phương án C.
Xem thêm bài tập Toán 10 CD có lời giải hay khác:
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho →a=(a1;a2),→b=(b1;b2) và →x=(a1+b1;a2+b2). Khi đó →x bằng:
Xem lời giải »
Câu 2:
Cho hai vectơ →m=(m1;m2),→n=(n1;n2) khác →0. Nếu tồn tại một số k ∈ ℝ thỏa mãn m1 = kn1 và m2 = kn2 thì:
Xem lời giải »
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho →u=(3;−6). Khi đó 12→u là:
Xem lời giải »
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho →x=(10;2),→y=(−5;8). Khi đó →x.→y bằng:
Xem lời giải »
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho hai điểm M(–1; –2) và N(–3; 2). Tọa độ trung điểm I của đoạn thẳng MN là:
Xem lời giải »
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2), B(2; 0), C(–3; 1). Tọa độ trọng tâm G của tam giác ABC là:
Xem lời giải »