Trong mặt phẳng tọa độ Oxy, cho vec u = ( 3; - 6). Khi đó 1/2 vec u là: A. 1/2 vec u = ( 6; - 12 ); B. 1/2 vec u = ( 5/2; - 13/2); C. 1/2 vec u = ( 7/2; - 11/2 ); D. 1/2 vec u = ( 3/2; -


Câu hỏi:

Trong mặt phẳng tọa độ Oxy, cho \(\vec u = \left( {3; - 6} \right)\). Khi đó \(\frac{1}{2}\vec u\) là:

A. \(\frac{1}{2}\vec u = \left( {6; - 12} \right)\);
B. \(\frac{1}{2}\vec u = \left( {\frac{5}{2}; - \frac{{13}}{2}} \right)\);
C. \(\frac{1}{2}\vec u = \left( {\frac{7}{2}; - \frac{{11}}{2}} \right)\);
D. \(\frac{1}{2}\vec u = \left( {\frac{3}{2}; - 3} \right)\).

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Ta có \[\frac{1}{2}\vec u = \left( {\frac{1}{2}.3;\frac{1}{2}.\left( { - 6} \right)} \right)\].

Suy ra \(\frac{1}{2}\vec u = \left( {\frac{3}{2}; - 3} \right)\).

Vậy ta chọn phương án D.

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {{a_1};{a_2}} \right),\,\,\vec b = \left( {{b_1};{b_2}} \right)\) và \(\vec x = \left( {{a_1} + {b_1};{a_2} + {b_2}} \right)\). Khi đó \(\vec x\) bằng:

Xem lời giải »


Câu 2:

Cho hai vectơ \(\overrightarrow m = \left( {{m_1};{m_2}} \right),\,\,\vec n = \left( {{n_1};{n_2}} \right)\) khác \(\vec 0\). Nếu tồn tại một số k ℝ thỏa mãn m1 = kn1 và m2 = kn2 thì:

Xem lời giải »


Câu 3:

Trong mặt phẳng tọa độ Oxy, cho hai điểm C(4; 2), D( 5; 11). Khi đó độ dài đoạn thẳng CD bằng:

Xem lời giải »


Câu 4:

Trong mặt phẳng tọa độ Oxy, cho \(\vec x = \left( {10;2} \right),\,\,\vec y = \left( { - 5;8} \right)\). Khi đó \(\vec x.\vec y\) bằng:

Xem lời giải »


Câu 5:

Trong mặt phẳng tọa độ Oxy, cho hai điểm M(–1; –2) và N(–3; 2). Tọa độ trung điểm I của đoạn thẳng MN là:

Xem lời giải »


Câu 6:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2), B(2; 0), C(–3; 1). Tọa độ trọng tâm G của tam giác ABC là:

Xem lời giải »