Cho ∆ABC. Khẳng định nào sau đây đúng? A. cot A = b^2 + c^2 - a^2/4S; B. cot A = b^2 + c^2 + a^2/4S; C. cot A = b^2 + c^2 - a^2/S; D. cot A = b^2 + c^2 - a^2/2S
Câu hỏi:
Cho ∆ABC. Khẳng định nào sau đây đúng?
A. \(\cot A = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}}\);
B. \(\cot A = \frac{{{b^2} + {c^2} + {a^2}}}{{4S}}\);
C. \(\cot A = \frac{{{b^2} + {c^2} - {a^2}}}{S}\);
D. \(\cot A = \frac{{{b^2} + {c^2} - {a^2}}}{{2S}}\).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Theo hệ quả định lí côsin, ta có \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Diện tích ∆ABC là: \(S = \frac{1}{2}bc.\sin A\).
Ta có \(\cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc.\sin A}}\)
\( = \frac{{{b^2} + {c^2} - {a^2}}}{{4.\frac{1}{2}bc.\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}}\)
Vậy ta chọn phương án A.
Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:
Câu 1:
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Xem lời giải »
Câu 2:
Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?
Xem lời giải »
Câu 3:
Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?
Xem lời giải »
Câu 4:
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?
Xem lời giải »
Câu 5:
Cho ∆ABC thỏa mãn sinC = 2sinB.cosA. Khi đó ∆ABC là:
Xem lời giải »