Tam giác đều nội tiếp đường tròn bán kính R = 4 cm có diện tích bằng: A. 13 cm^2; B. 13 căn bậc hai của 2 cm^2; C. 12 căn bậc hai của 3 cm^2; D. 15 cm^2.
Câu hỏi:
Tam giác đều nội tiếp đường tròn bán kính R = 4 cm có diện tích bằng:
A. 13 cm2;
B. \(13\sqrt 2 \) cm2;
C. \(12\sqrt 3 \) cm2;
D. 15 cm2.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Do ∆ABC đều nên \(\widehat {BAC} = 60^\circ \).
Áp dụng định lí sin cho ∆ABC, ta có \(\frac{{BC}}{{\sin \widehat {BAC}}} = 2R\)
⇔ BC = 2R.sinA = 2.4.sin60° = \(4\sqrt 3 \).
Vì ∆ABC đều nên ta có AB = AC = BC = \(4\sqrt 3 \).
Diện tích ∆ABC là:
\(S = \frac{{AB.AC.BC}}{{4R}} = \frac{{4\sqrt 3 .4\sqrt 3 .4\sqrt 3 }}{{4.4}} = 12\sqrt 3 \) (cm2)
Do đó ta chọn phương án C.
Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:
Câu 1:
Giá trị của biểu thức B = 3 – sin290° + 2cos260° – 3tan245° bằng:
Xem lời giải »
Câu 2:
Cho hai góc α và β (với 0° ≤ α, β ≤ 180°) thỏa mãn α + β = 180°. Giá trị của biểu thức P = sinα.cosα + sinβ.cosβ bằng:
Xem lời giải »
Câu 3:
Giá trị của biểu thức M = sin50° + cos70° + cos110° – sin130° bằng:
Xem lời giải »
Câu 4:
Giá trị của biểu thức H = cot5°.cot10°.cot15°…cot80°.cot85° bằng:
Xem lời giải »
Câu 5:
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Xem lời giải »
Câu 6:
Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?
Xem lời giải »