Tập nghiệm của bất phương trình x^2 – 3x + 2 < 0 là
Câu hỏi:
Tập nghiệm của bất phương trình x2 – 3x + 2 < 0 là:
C. (–∞; 1);
D. (2; +∞).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Tam thức bậc hai f(x) = x2 – 3x + 2 có ∆ = (–3)2 – 4.1.2 = 1 > 0.
Do đó f(x) có hai nghiệm phân biệt là:
Ta lại có a = 1 > 0.
Do đó ta có:
⦁ f(x) âm trên khoảng (1; 2);
⦁ f(x) dương trên hai khoảng (–∞; 1) và (2; +∞);
⦁ f(x) = 0 khi x = 1 hoặc x = 2.
Vì vậy bất phương trình x2 – 3x + 2 < 0 có tập nghiệm là (1; 2).
Ta chọn phương án A.
Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:
Câu 1:
Cho tam thức bậc hai f(x) = x2 – 10x + 2. Kết luận nào sau đây đúng?
Xem lời giải »
Câu 2:
Cho tam thức bậc hai f(x) = –2x2 + 8x – 8. Trong các mệnh đề sau, mệnh đề nào đúng?
Xem lời giải »
Câu 3:
Bảng xét dấu nào sau đây là của f(x) = 6x2 + 37x + 6?
Xem lời giải »
Câu 4:
Cho tam thức bậc hai f(x) = x2 + 1. Mệnh đề nào sau đây đúng nhất?
Xem lời giải »
Câu 7:
Cho hàm số bậc hai f(x) có đồ thị như hình bên.
Tập nghiệm của bất phương trình f(x) ≥ 0 là:
Xem lời giải »