Trong mặt phẳng tọa độ Oxy, cho điểm M(a; b) di động trên đường thẳng d: 2x + 5y – 10 = 0.
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho điểm M(a; b) di động trên đường thẳng d: 2x + 5y – 10 = 0. Tìm a, b để khoảng cách ngắn nhất từ điểm A đến điểm M, biết điểm A(3; ‒1).
A. a = và b = ;
B. a = và b = ;
C. a = và b = ;
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Để khoảng cách AM là ngắn nhất thì M là hình chiếu của A lên đường thẳng d.
Khi đó AM vuông góc với d, do đó vectơ pháp tuyến của đường thẳng AM chính là vectơ chỉ phương của đường thẳng d.
Vectơ pháp tuyến của đường thẳng d là:
Vectơ chỉ phương của đường thẳng d là:
Khi đó là vectơ pháp tuyến của đường thẳng AM.
Phương trình đường thẳng AM là:
5.(x – 3) – 2.(y + 1) = 0 hay 5x – 2y – 17 = 0.
M là giao điểm của 2 đường thẳng AM và d nên tọa độ điểm M là nghiệm của hệ:
.
Vậy a = và b = .