Cho phương trình x^2 + y^2 – 2mx – 4(m – 2)y + 6 – m = 0 (1) . Tìm điều kiện


Câu hỏi:

Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0 (1) . Tìm điều kiện của m để (1) là phương trình đường tròn.

A. m (1; 2);                 

B. m (−∞; 1) (2; +∞);              

C. m (−∞; 1] [2; +∞);             

D. m [1; 2].

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Phương trình (1) có : a = m; b = 2(m – 2); c = 6 – m

Phương trình (1) là phương trình đường tròn khi và chỉ khi a2 + b2 – c > 0

m 2 + 4(m – 2)2 – (6 – m) > 0

5m 2 – 15m + 10 > 0

m (−∞; 1) (2; +∞).

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Khoảng cách từ giao điểm của hai đường thẳng d1: x – 3y + 4 = 0 và d2 : 2x +3y - 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng

Xem lời giải »


Câu 2:

Góc tạo bởi hai đường thẳng d1: 2x – y – 10 = 0 và d2: x − 3y + 9 = 0

Xem lời giải »


Câu 3:

Phương trình đường tròn tâm I(– 2; 1) và tiếp xúc đường thẳng ∆: x – 2y + 7 = 0 là:

Xem lời giải »


Câu 4:

Cho tam giác ABC có A(2; 3), B(1; 2), C(5; 4). Gọi M là trung điểm của BC. Phương trình tham số của đường trung tuyến AM của ∆ABC là:

Xem lời giải »


Câu 5:

Lập phương trình chính tắc của parabol đi qua điểm M(1; 2)

Xem lời giải »


Câu 6:

Giá trị m để đường thẳng ∆: (m – 1)y + mx – 2 = 0 là tiếp tuyến của đường tròn (C): x2 + y2 – 6x + 5 = 0

Xem lời giải »


Câu 7:

Điểm nào sau đây thuộc hypebol (H) : x225y29=1

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2