Đường tròn (C) có tâm I (-2; 3) và đi qua M (2; -3) có phương trình là:


Câu hỏi:

Đường tròn (C) có tâm I (-2; 3) và đi qua M (2; -3) có phương trình là:

A.   \[{\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = \sqrt {52} ;\]

B. \[{\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 52;\]

C.   \[{x^2} + {y^2} + 4x - 6y - 57 = 0;\]                    

D. \[{x^2} + {y^2} + 4x - 6y - 39 = 0.\]

Trả lời:

Đáp án đúng là: D

Ta có: Bán kính của đường tròn:

R = IM = \[\sqrt {{{\left( {2 + 2} \right)}^2} + {{\left( { - 3 - 3} \right)}^2}} = \sqrt {52} \]

Vậy phương trình đường tròn \[\left( C \right):\left\{ \begin{array}{l}I\left( { - 2;3} \right)\\R = \sqrt {52} \end{array} \right.\]là: \[\left( C \right):{\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 52.\]

hay \[\left( C \right):{x^2} + {y^2} + 4x - 6y - 39 = 0\].

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Tọa độ tâm I và bán kính R của đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\] là:

Xem lời giải »


Câu 2:

Gọi I(a; b) là tâm của đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]. Tính S = 2a + b:

Xem lời giải »


Câu 3:

Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8\]. Tìm I và tính S = 3.R.

Xem lời giải »


Câu 4:

Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{x^2} + {y^2} = 9\]. Tìm I và tính S = \[{R^3}\].

Xem lời giải »


Câu 5:

Đường tròn đường kính AB với A (3; -1), B (1; -5) có phương trình là:

Xem lời giải »


Câu 6:

Phương trình tiếp tuyến d của đường tròn \[\left( C \right):{\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} = 25\] tại trung điểm của A (1; 3) và B (3; -1) là:

Xem lời giải »


Câu 7:

Cho đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\]. Viết phương trình tiếp tuyến d của (C) tại điểm A (3; -4).

Xem lời giải »


Câu 8:

Phương trình tiếp tuyến d của đường tròn \[\left( C \right):{x^2} + {y^2} - 3x - y = 0\] tại điểm đối xứng với M (-1; -1) qua trục Oy là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2