Phương trình tiếp tuyến d của đường tròn (C): x^2 + y^2 - 3x - y = 0 tại điểm đối xứng
Câu hỏi:
Phương trình tiếp tuyến d của đường tròn \[\left( C \right):{x^2} + {y^2} - 3x - y = 0\] tại điểm đối xứng với M (-1; -1) qua trục Oy là:
Trả lời:
Đáp án đúng là: D
Gọi N là điểm đối xứng của M qua Oy, ta có: N (1; -1).
Đường tròn (C) có tâm \[I\left( {\frac{3}{2};\frac{1}{2}} \right)\] nên tiếp tuyến tại N có VTPT là
\[\vec n = \overrightarrow {IN} = \left( { - \frac{1}{2}; - \frac{3}{2}} \right) = - \frac{1}{2}\left( {1;3} \right),\]
Nên có phương trình là: 1(x - 1) +3(y + 1) = 0\[ \Leftrightarrow \]x + 3y + 2 = 0.
Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:
Câu 1:
Tọa độ tâm I và bán kính R của đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\] là:
Xem lời giải »
Câu 2:
Gọi I(a; b) là tâm của đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]. Tính S = 2a + b:
Xem lời giải »
Câu 3:
Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8\]. Tìm I và tính S = 3.R.
Xem lời giải »
Câu 4:
Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{x^2} + {y^2} = 9\]. Tìm I và tính S = \[{R^3}\].
Xem lời giải »
Câu 5:
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} = 5\], biết tiếp tuyến song song với đường thẳng d: 2x + y + 7 = 0.
Xem lời giải »
Câu 6:
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\], biết tiếp tuyến song song với đường thẳng d: 3x – 4y – 2018 = 0.
Xem lời giải »