Nghiệm của phương trình căn bậc hai (2x + 7) = x - 4 thuộc khoảng nào


Câu hỏi:

Nghiệm của phương trình \[\sqrt {2x + 7} = x - 4\] thuộc khoảng nào dưới đây:

A. (0; 2);

B. (9; 10);

C. [7; 9];

D. (-1; 1].

Trả lời:

Đáp án đúng là: C

Điều kiện của phương trình: 2x + 7 ≥ 0 \[ \Leftrightarrow x \ge - \frac{7}{2}\]

2x+7=x4x42x+7=x42x4x210x+9=0x4x=1x=9x=9

Vậy phương trình đã cho có nghiệm là x = 9 [7; 9].

Đáp án đúng là C.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:

Xem lời giải »


Câu 2:

Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là:

Xem lời giải »


Câu 3:

Nghiệm của phương trình \[\sqrt {3x + 13} = x + 3\] là:

Xem lời giải »


Câu 4:

Số nghiệm của phương trình \[\sqrt {{x^2} + 5} = {x^2} - 1\] là:

Xem lời giải »


Câu 5:

Gọi k là số nghiệm âm của phương trình :\(\sqrt { - {x^2} + 6x - 5} = 8 - 2x\). Khi đó k bằng:

Xem lời giải »


Câu 6:

Tổng các nghiệm của phương trình \[\left( {x - 2} \right)\sqrt {2x + 7} = {x^2} - 4\] bằng:

Xem lời giải »


Câu 7:

Số nghiệm của phương trình :\(\sqrt {2 - x} + \frac{4}{{\sqrt {2 - x} + 3}} = 2\) là:

Xem lời giải »


Câu 8:

Số nghiệm của phương trình \[4\sqrt {{x^2} - 6x + 6} = {x^2} - 6x + 9\] là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2