Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó: a) y = – x2 + 6x – 9; b) y = – x2 – 4x + 1;


Câu hỏi:

Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó:

a) y = – x2 + 6x – 9;

b) y = – x2 – 4x + 1;

c) y = x2 + 4x;

d) y = 2x2 + 2x + 1.

Trả lời:

Hướng dẫn giải

a) y = – x2 + 6x – 9 là hàm số bậc hai nên đồ thị là một parabol.

Hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.

Parabol trên có:

+ Tọa độ đỉnh I(3; 0);

+ Trục đối xứng x = 3;

+ Cắt trục Oy tại điểm A(0; – 9);

+ Điểm đối xứng với A qua trục đối xứng x = 3 là B(6; – 9);

+ Lấy điểm D(1; – 4) thuộc parabol, điểm đối xứng với D là trục đối xứng x = 3 là E(5; – 4).

Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.

Media VietJack

Quan sát đồ thị ta thấy:

+ Tập giá trị của hàm số là (– ; 0].

+ Hàm số đồng biến trên khoảng (– ; 3) (do đồ thị hàm số đi lên từ trái sang phải) và nghịch biến trên khoảng (3; + ) (do đồ thị hàm số đi xuống từ trái sang phải).

b) y = – x2 – 4x + 1 là hàm số bậc hai nên đồ thị là một parabol.

Hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.

Parabol trên có:

+ Tọa độ đỉnh I(– 2; 5);

+ Trục đối xứng x = – 2;

+ Cắt trục Oy tại điểm A(0; 1);

+ Điểm đối xứng với A qua trục đối xứng x = – 2 là B(– 4; 1);

+ Lấy điểm C(– 1; 4) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = – 2 là D(– 3; 4).

Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.

Media VietJack

Quan sát đồ thị hàm số ta thấy:

+ Tập giá trị của hàm số là (– ; 5].

+ Hàm số đồng biến trên khoảng (– ; – 2) và nghịch biến trên khoảng (– 2; + ).  

c) y = x2 + 4x là hàm số bậc hai nên đồ thị là một parabol.

Hệ số a = 1 > 0 nên bề lõm của đồ thị quay lên trên.

Parabol trên có:

+ Tọa độ đỉnh I(– 2; – 4);

+ Trục đối xứng x = – 2;

+ Cắt trục Oy tại điểm gốc tọa độ O(0; 0);

+ Điểm đối xứng với O qua trục đối xứng x = – 2 là điểm B(– 4; 0);

+ Lấy điểm C(– 1; – 3) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = – 2 là D(– 3; – 3).

Vẽ đường cong đi qua các điểm trên ta được đồ thị cần vẽ.

Media VietJack

Quan sát đồ thị hàm số ta thấy:

+ Tập giá trị của hàm số là [– 4; + ).

+ Hàm số nghịch biến trên khoảng (– ; – 2) và đồng biến trên khoảng (– 2; + ).

d) y = 2x2 + 2x + 1 là hàm số bậc hai nên đồ thị là một parabol.

Hệ số a = 2 > 0 nên bề lõm của đồ thị quay lên trên.

Parabol trên có:

+ Tọa độ đỉnh I(12;12);

+ Trục đối xứng x = 12;

+ Cắt trục Oy tại điểm A(0; 1).

+ Điểm đối xứng với A qua trục đối xứng x = 12 là B(– 1; 1);

+ Lấy điểm C(1; 5) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = 12 là D(– 2; 5).

Vẽ đường cong đi qua các điểm đã cho ta được đồ thị cần vẽ.

Media VietJack

Quan sát đồ thị ta thấy:

+ Tập giá trị của hàm số là [12;+).

+ Hàm số nghịch biến trên khoảng (;12) và đồng biến trên khoảng (12;+).

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

A. Trắc nghiệm

Chọn phương án đúng.

Tập xác định của hàm số y = 1x2 là:

Xem lời giải »


Câu 2:

Parabol y = – x2 + 2x + 3 có đỉnh là

Xem lời giải »


Câu 3:

Hàm số y = x2 – 5x + 4

Xem lời giải »


Câu 4:

Bất phương trình x2 – 2mx + 4 > 0 nghiệm đúng với mọi xR khi

Xem lời giải »


Câu 5:

Xác định parabol (P): y = ax2 + bx + 3 trong mỗi trường hợp sau:

a) (P) đi qua hai điểm A(1; 1) và B(– 1; 0);

b) (P) đi qua điểm M(1; 2) và nhận đường thẳng x = 1 làm trục đối xứng;

c) (P) có đỉnh là I(1; 4).

Xem lời giải »


Câu 6:

Giải các bất phương trình sau:

a) 2x2 – 3x + 1 > 0;

b) x2 + 5x + 4 < 0;

c) – 3x2 + 12x – 12 ≥ 0;

d) 2x2 + 2x + 1 < 0.

Xem lời giải »


Câu 7:

Giải các phương trình sau:

a) 2x214=x1;

b) x25x+2=x22x3.

Xem lời giải »


Câu 8:

Một công ty bắt đầu sản xuất và bán một loại máy tính xách tay từ năm 2018. Số lượng loại máy tính đó bán được trong hai năm liên tiếp 2018 và 2019 lần lượt là 3,2 nghìn và 4 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ty, trong khoảng 10 năm kể từ năm 2018, số lượng máy tính loại đó bán được mỗi năm có thể được mô tả bởi một hàm số bậc hai.

Giả sử t là thời gian (theo đơn vị năm) tính từ năm 2018. Số lượng loại máy tính đó bán được trong năm 2018 và năm 2019 lần lượt được biểu diễn bởi các điểm (0; 3,2) và (1; 4). Giả sử điểm (0; 3,2) là đỉnh đồ thị của hàm số bậc hai này.

a) Lập công thức của hàm số mô tả số lượng máy tính xách tay bán được qua từng năm.

b) Tính số lượng máy tính xách tay đó bán được trong năm 2024.

c) Đến năm bao nhiêu thì số lượng máy tính xách tay đó bán được trong năm sẽ vượt mức 52 nghìn chiếc?

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2