Luyện tập 2 trang 110 Toán 11 Tập 2 Cánh diều
Cho hình chóp tam giác đều S.ABC. Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.
Giải Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối - Cánh diều
Luyện tập 2 trang 110 Toán 11 Tập 2: Cho hình chóp tam giác đều S.ABC. Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.
Lời giải:
Do S.ABC là hình chóp tam giác đều nên SA = SB = SC (các cạnh bên bằng nhau).
Gọi O là chân đường cao của hình chóp tam giác đều S.ABC.
Do SO ⊥ (ABC) nên SO ⊥ OA, SO ⊥ OB, SO ⊥ OC.
Xét ∆SAO và ∆SBO có:
SO là cạnh chung;
SA = SB (chứng minh trên)
Do đó ∆SAO = ∆SBO (cạnh huyền – cạnh góc vuông)
Suy ra (hai góc tương ứng)
Chứng minh tương tự, ta cũng có∆SAO = ∆SCO nên
Từ đó ta có:
Vậy các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.
Lời giải bài tập Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối hay, chi tiết khác: